<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code		20M45EC111	Semester: Ode	Odd Semester 10th Month from		h Session 2021 -2022 July to December		
Course Name		Advanced Communication Systems Lab -1						
Credits		3		Contact H	Iours		6	
Faculty (N	ames)	Coordinator(s)	Dr Juhi Gupta					
		Teacher(s) (Alphabetically)	Dr Ashish Goe	<u>l</u>				
COURSE	OUTCO	OMES					COGNITIVE LEV	/ELS
CO1	Unders techno	standing of Matlab logies.	applications to wire	eless comm	unication		Understanding (22)
CO2	Analyz applica	ze wireless commun ations	ication channel mo	dels and un	derstand t	their	Analyzing (C4	4)
CO3	Applyi	ing the equalization	techniques for com	munication	s systems	•	Applying (C3	5)
CO4	Analyz	ze and evaluate the s	spread spectrum con	mmunicatio	n system.		Evaluate (C5)
CO5	Evaluate the BER performance of M-ary digital modulation schemes over AWGN and fading Channels.Evaluate (C			Evaluate (C5)			
Module No.	Title	e of the Module	List of Experiments			СО		
1.	Intro and i	duction to Matlab ts application	Introduction to MATLAB and its various applications.			lications.	CO1	
2.	Wire Com Char	less munication mel	To study and sim two signals that fo	To study and simulate Rayleigh and Rician distribution using two signals that follow normal distribution.			CO2	
3.	Wire Com Char	less munication mel	To study and simu Propagation, long	d simulate Propagation Path loss Models: Free Space 1, long distance and log normal.			CO2	
4.	Wire Com Char	less munication mel	To write a MATLAB program to calculate the median path loss for Outdoor Propagation – Okumura Model and Hata Model.			CO2		
5.	Equa Com Syste	lization in munication ems	in To Study and analyze the process of Zero-forcing equalization process, when channel distorted input pulse is applied as an input.			CO3		
6.	Equa Com Syste	alization in munication ems	To study and simulate the effect of quantization levels on Quantization error in anon-uniform PCM utilizing μ -law companding. Also analyze the effect of quantization levels on SQNR.			CO3		
7.	Equa Com Syste	alization in nmunication ems	To Study and an equalization proc applied as an input	o Study and analyze the process of minimum mean square CO3 pualization process, when channel distorted input pulse is oplied as an input.			CO3	
8.	Equa Com	lization in munication	To Study and de algorithm for give	To Study and design an adaptive equalizer based on LMS CO3 lgorithm for given number of taps and channel characteristic.			CO3	

	Systems				
9.	Spread spectrum Communication Systems	To study and simulate the generation of Direct Sequence Spread Spectrum(DS-SS) Signal using PN Sequence and analyze frequency spectrum of DS-SS signal, when BPSK modulation is used for data transmission, and also determine the target distance (ranging).	CO4		
10.	Spread spectrum Communication Systems	To study and demonstrate the performance of an FH-SS system that employs binary FSK and corrupted by worst-case partial band interference.	CO4		
11.	Bandpass Digital Modulations	To simulate the BER performance of M-PSK system over AWGN Channel using Matlab.	CO5		
12.	Bandpass Digital Modulations	To simulate the BER performance of M-QAM system over AWGN Channel using Matlab.	CO5		
Evaluation (Components Viva -1 20 Viva -2 20 D2D- 60 Total	Criteria s Max 100	ximum Marks			
Pasammanded Deading material: Author(a) Title Edition Publisher Vaer of Publication at (Taxt backs					

Refe	Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	John G. Proakis, "Digital Communication", McGraw Hill, 5th edition, 2013.					
2.	Don Torrieri, " Principles of Spread-Spectrum Communication Systems ", Springer, 2015.					
3.	H. Taub, D. L. Schilling and Gautam Saha, Principles of Communication Systems, 4th/ed, TMH, 2017					

Detailed Syllabus Lab-wise Breakup

Course Code	20M45EC112	Semester: EV 2020	EN	Semeste Month	er 2 nd Session 2021 -2022 from Jan to June
Course Name	Advanced Communication Systems Lab-2				
Credits	3		Contact H	Iours	6

Faculty (Names)	Coordinator(s)	
	Teacher(s) (Alphabetically)	

COURSE OUTCOMES		COGNITIVE LEVELS
CO1	Plan a communications system for a given environment in which it is to be deployed.	Apply Level (III)
CO2	Perform measurements with commercial equipment and understand the effects of radio channel on the OFDM signal as well as strategies to compensate them	Create Level (VI)
CO3	Use of MIMO technology in 5G communication	Evaluate Level (V)
CO4	Understand the different mode of optical fiber and to analyze the performance of optical communication system	Analyze (Level IV)

Module No.	Title of the Module	List of Experiments	CO
1.	Exp.1	To study atmospheric turbulence models in Free Space Optical Communication system and implement them using MATLAB	CO1
2.	Exp.2	To determine the channel capacity for AWGN and faded wireless channels	CO1
3.	Exp. 3	OFDM systems implementation using MATLAB	CO2
4.	Exp. 4	To obtain the PAPR analysis of multi-carrier signal and the performance of PAPR & BER with clipping and filtering Scheme.	CO2
5.	Exp. 5	To analyze the effect of carrier frequency offset (CFO) in OFDM system and evaluate the error performance of OFDM System for given normalized CFO.	CO2
6.	Exp 6	To analyze the effect of μ -law companding function on PAPR reduction in OFDM system and evaluate the error performance of OFDM System for given of μ .	CO2
7.	Exp.7	To simulate the channel capacity for MIMO system	CO3
8.	Exp.8	To analyze the performance of MIMO systems by using space time code technique.	CO3
9.	Exp 9	Determine the optical modes that exist for multimode step index fibers and investigate their performance on optical systems.	CO4
10.	Exp 10	Investigate the effect of loss on optical system performance and	CO4

		characterize the system with the power budget equation.		
11.	Exp 11	Investigate the effects of dispersion on optical systems.	CO4	
12.	Exp 12	Investigate the characteristics of PIN Photodiode and plot its frequency response.	CO4	
Evaluation	Criteria			
Component	s	Maximum Marks		
Viva -1	20			
Viva -2	20			
D2D	60			
Total	100			

1.	Aditya K Jagannatham, Principles of Modern Wireless Communication Systems Theory and Practice, TMH, 2/e, 2017
2.	Yong Soo Cho, Jaekwon Kim, Won Young Yang, Chung-Gu Kang, MIMO-OFDM Wireless Communications with MATLAB, Wiley, 2013
3.	Gerd Keiser, Optical Fiber Communications, 3rd Edition, McGraw-Hill International edition, 2000.

Detailed Syllabus

Lecture-wise Breakup

Course Code	20M41EC117	7 Semester: ODD Semest		Sessi	on: 2020-21
		(specify Odd/Even)	Month from	July	to Dec
Course Name	ADVANCED DIGITAL CO	GITAL COMMUNICATION SYSTEMS			
Credits	3	Contact Hours	3		
Faculty	Coordinator(s)	Dr. Ashish Goel			
(Names)	Teacher(s) (Alphabetically)	Dr. Ashish Goel			

COURSE O	UTCOMES- At the completion of the course, students will be able to	COGNITIVE LEVELS
C112.1	Understanding of line coding schemes and study of various issues related to ISI,	Understanding Level (C2)
C112.2	Understand and analyse the Optimum filter realization for digital signals	Analyzing Level (C4)
C112.3	Understand the concepts of digital modulation techniques and evaluate their probability of error and bandwidth efficiency.	Evaluating Level (C5)
C112.4	Understanding of symbol and carrier synchronization and various equalization schemes.	Understanding Level (C2)
C112.5	Analyse different types of spread spectrum techniques.	Analyzing Level (C4)

Module No.	Title of the Module	Topics in the module	No. of Lectures for the module
1.	Waveform Coding and	Overview of wave form coding scheme,	10
	Baseband Shaping for Data	Companding scheme for PCM system,	
	Transmission	Signal to Quantization Noise Ratio of	
		Companded PCM system. Line codes and	
		Power Spectral Density of line coding	
		schemes, Intersymbol Interference: Ideal	
		solution, Practical Solution and Correlative	
		Coding. Eye pattern.	
2.	Optimal Reception of Digital	Baseband Signal Receiver, Peak signal to	8
	Signals	RMS Noise output Voltage Ratio,	
		Probability of error, Optimum Threshold:	
		Maximum Likelihood Detector and Bayes'	
		Receiver, Optimal receiver design:	

		calculation of the optimum filter transfer			
		function, Optimum filter realization using			
		Match filter, Probability of error of			
		Matched filter, Optimum filter realization			
		using Correlator			
3.	Digital Modulation	Digital modulation formats, M-ray	10		
	Techniques	modulation techniques: Modulation,			
		Demodulation, Power spectra, Bandwidth			
		efficiency, symbol error probabilities.			
		Channel capacity theorem for M-ary			
		modulation formats. Minimum Shift			
		keying: Effect of side lobes, MSK as FSK,			
		continuity in MSK generation and			
		recention of MSK GMSK			
4.	Synchronization and	Synchronization: Phase Jitter in Symbol	7		
	Equalization	Synchronization, Carrier synchronization.	·		
		Equalization: Maximum–Likelihood			
		Sequence Estimation (MLSE), Linear			
		equalization, Decision -feedback			
		equalization, Reduced complexity ML			
		detectors			
5.	Spread Spectrum Signals for	Model of spread spectrum digital	7		
	Digital Communication	communication system, Spreading code			
		sequences; generation and properties: PN			
		Sequence, Gold Code, Walsh Hadamard			
		Code. Direct sequence spread spectrum			
		signals; Frequency hopped spread			
		spectrum signals, FDMA, TDMA, CDMA,			
		systems			
		Total number of Lectures	42		
Evaluation Crite	eria				
Components	Maximum Ma	arks			
T2	20 20				
End Semester E	xamination 35				
TA 25(Attendance, Performance. Assignment/Quiz)					
Total	100				

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	John G. Proakis, "Digital Communication", McGraw Hill, 5th edition, 2013.			
2.	H. Taub, D. L. Schilling and Gautam Saha, Principles of Communication Systems, 4 th /ed, TMH, 2017			
3.	S.Haykin, Digital Communication Systems ,John Wiley & Sons, 2013			
4.	Don Torrieri, " Principles of Spread-Spectrum Communication Systems ", Springer, 2015.			

Detailed Syllabus

Lecture-wise Breakup						
Course Code	18M22EC116/ 17M11EC118	Semester Od (specify Odd	ld 2018 /Even)	Semeste Session	er I July 2020 –December 2021	
Course Name	ADVANCED DIGIT	TAL SIGNAL PROCESSING				
Credits	3	Contact Hours 3		3		

Faculty (Names) Coordinator(s)		Dr. Vineet Khandelwal
	Teacher(s) (Alphabetically)	NIL

COUR At the	COURSE OUTCOMES At the end of the semester, students will be able to		
CO1	Recall the principles of various transform techniques like Z, Chirp Z, Hilbert, Discrete Fourier transform and Fast Fourier Transform.	Applying (Level III)	
CO2	Demonstrate the ability to apply different methods to design and analyze digital FIR (Finite Impulse Response) and IIR (Infinite Impulse Response) filters with its structural realization.	Analyzing (IV)	
CO3	Analyze Multirate signal processing and examine its application.	Analyzing (Level IV)	
CO4	Comprehend different methods for designing adaptive filters and examine its application	Analyzing (Level IV)	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Review of Digital	Review of discrete-time sequences and systems, Linear	9
	Signal Processing	Shift Invariant (LSI) systems. Causality and Stability	
		Criterion, FIR & IIR representations, Z-Transform,	
		Discrete Fourier Transform (DFT), Fast Fourier	
		Transform (FFT) algorithms using decimation in time	

		and decimation in frequency techniques, Chirp Z- Transform, Hilbert Transform and applications	
2.	Design of IIR and FIR Filters	Digital filter specifications, selection of filter type, and filter order, FIR filter design; using windowing Techniques, Fourier Series and frequency sampling method, Design of IIR Filters Using Butterworth, Chebyshev and Elliptic Approximations, Frequency Transformation Techniques; approximation of derivatives, Impulse invariant method, Bilinear transformation, Structures for IIR Systems – Direct Form I & II, Cascade, Parallel, Lattice & Lattice-Ladder Structures, Structures For FIR Systems – Direct , Cascade, Parallel, Lattice & Lattice ladder Structures.	11
3.	Multirate Digital Signal Processing	Decimation & Interpolation, Sampling rate conversion, Identities, polyphase decomposition, General polyphase framework for Decimator and Interpolator, Multistage decimator and Interpolator, Efficient transversal structure for Decimator and Interpolator, FIR and IIR structure for Decimator, Filter design for FIR decimator and Interpolator, Application of Multirate Signal processing.	16
4.	Adaptive Filters	Introduction. Application of adaptive filters, Adaptive Direct-form FIR filters Adaptive Lattice-Ladder filters.	6
		Total number of Lectures	42
Evaluation	Criteria		
Componen T1 T2 End Semes TA Total	ter Examination	Maximum Marks 20 20 35 25 () 100	

1.	J.G. Proakis & D.G. Manolakis, "Digital Signal Processing, Principles, Algorithms and Applications", PHI ,3 rd Edition
2.	John G. Proakis, Charles M. Rader, Fuyun Ling, Chrysostomos L. Nikias, Mark Moonen and Ian K. Proudler, Algorithms for Statistical Signal Processing, Pearson Education Inc., 2002
3.	P.P. Vaidyanathan, "Multirate Systems and Filter Banks", PHI, 2010

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	17M12EC125	Semester : Odd 2019 (specify Odd/Even)		Semeste Month f	er IInd Session 2019-2020 from July – Dec. 2019
Course Name	Detection and Estimation Theory				
Credits	3		Contact Hours 3		3

Faculty (Names)	Coordinator(s)	Dr. Vikram Karwal
	Teacher(s) (Alphabetically)	Dr. Vikram Karwal

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	The course aims to familiarize student with stochastic processes and its properties.	Understanding Level (C2)
CO2	The course helps students to analyze probabilistic models and estimate the parameters of the model parameters.	Analyze Level (C4)
CO3	The course helps students evaluate the observations of the noise- corrupted functions and determine the best estimate of the state.	Evaluating Level (C5)
CO4	The course helps student compute the optimality criteria to quantify best estimates or detection decisions and limits on performance.	Applying Level (C3)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Review of random variables	Distribution and density functions, moments, independent, uncorrelated and orthogonal random variables; Vector-space representation of random variables, Schwarz Inequality, Orthogonality principle in estimation, Central limit theorem, Random Process, stationary process, autocorrelation and autocovariance functions, Spectral representation of random signals, Wiener Khinchin theorem, Properties of power spectral density, Gaussian Process and white noise	6
2.	Parameter estimation theory	Principal of estimation and applications, Properties of estimates, unbiased and consistent estimators, MVUE, CR bound, Efficient estimators; Criteria of estimation: the methods of maximum likelihood and its properties; Baysean estimation: Mean Square error and MMSE, Mean Absolute error, Hit and Miss cost function and MAP estimation	8

3.	Estimation of signal in presence of White Gaussian Noise(WGN)	Linear Minimum Mean-Square Error(LMMSE) Filtering: Wiener Hoff Equation FIR Wiener filter, Causal IIR Wiener filter, Noncausal IIR Wiener filter, Linear prediction of signals, Forward and Backward Predictions, Levinson Durbin Algorithm, Lattice filter realization of prediction error filters	8			
4.	Complexity Computations	Principle and Application, Steepest Descent Algorithm, Convergence characteristics; LMS algorithm, convergence, excess mean square error, Leaky LMS algorithm; Applications of Adaptive filters; RLS algorithm, derivation, Matrix inversion Lemma, Initilization, tracking of nonstationarity.	8			
5.	Kalman Filtering	Principle and application, Scalar Kalman filter, Vector Kalman filter	4			
6.	Detection Theory	Hypothesis testing, Bayesian, Neyman-Pearson and Minimax detetion, Composite Hypothesis testing, Generalized LRT, Sequential and Distributed Detection, Non-parametric detection, Detection in Gaussian noise	9			
Total number of Lectures						
Evaluation	Evaluation Criteria					
Components T1 T2 End Semester Examination TA Total		Maximum Marks 20 20 35 25 (5 Assignment, 5 Quiz, 5 Class Participation, 10 Attendand 100	ce)			

1.	An Introduction to Signal Detection and Estimation by H. Vincent Poor, Springer, 1994
2.	Linear Estimation by Thomas Kailath, Ali H sayed, Babak Hassibi, Prentice Hall, 2000
3.	Fundamentals of Statistical Signal Processing: Detection theory by Steven M Kay, Pearson, 2010
4.	Fundamentals of Statistical Signal Processing: Estimation theory by Steven M Kay, Pearson, 2010

Detailed Syllabus Lecture-wise Breakup

Subject Code		20M41EC119	Ser	nester: EVEN ecify	Semester : 2 S Month from J	Session 2 an to Jun	020 -21 e
Subject Name	Image: Control of Control o						
Credits		3	Co	ntact Hours	3		
Faculty		Coordinator(s)	1.	Dr. Ashish Goel			
(Names)		Teacher(s) (Alphabetically)					
COURSE	OU	TCOMES				COGNITI	VE LEVELS
C117.1	Γ	To understand OFDM system with its impairments. Understanding (C2)				tanding (C2)	
C117.2	Г р	To understand and analyze the various performanceAnalyzing (C4)parameters of OFDM system.					
C117.3	Г s	To understand and analyze the performance of MIMO Analyzing (C4) systems					
C117.4	T N	To understand the Single Carrier Frequency DivisionUnderstanding (C2)Multiplexing System					
Module No.	Sı	Subtitle of the Module		Topics in the r	nodule		No. of Lectures for the module
1.	In	Introduction		Basic principles o carrier vs. multi c frequency-divisio Block diagram, m frequency spectru synchronization, p effect of HPA on	f orthogonality, Sin arrier systems, orth n multiplexing (OF odulation, demodu m, need of cyclic p peak-to-average po OFDM signal,	ngle logonal DM): lation, orefix. wer ratio,	7
2.	PAPR and PAPR Reduction Schemes		on	PAPR of Base bas signal, PDF & CC reduction, PAPR techniques: Clipp filtering, Compan mapping (SLM), 1 (PTS), Tone Rese Active Constellati	nd and Bandpass O CDF of PAPR, Nee reduction bing, Iterative clipp ding schemes, Sele Partial transmit seq rvation (TR), Tone on Extension (AC)	FDM d of PAPR ing and ective uence Injection, E).	12
3.	Inter Carrier Interference (ICI) and ICI cancellation Schemes		I	Effect of Frequen Schemes: ICI self Self-Cancellation cancellation etc.	cy offset, ICI Canc cancellation, Sym Scheme , ICI conju	ellation metric ICI ugate	8

4.	Multiple-input multiple- output (MIMO) System	IS	MIMO System model, antenna diversity, MIMO detection algorithms: MIMO Zero- Forcing Receiver, MIMO MMSE Receiver, Singular Value Decomposition of MIMO Channel, MIMO capacity, Space-time coding. V-BLAST, MIMO Beamforming	12	
5.	Single Carrier Frequency Division Multiplexing (SC- FDMA)		SC-FDMA, Transmitter and Receiver, Subcarrier Mapping, Advantages and disadvantages	3	
			Total number of Lectures	42	
Evaluation Criteria					
Components Ma:		Max	imum Marks		
T1 20		20			
T2		20			
End Semester Examination 35		35			
TA 25(A		25(A	Attendance, Performance. Assignment/Q	uiz)	
Total 100		100			

Project based learning: Here, students will learn latest 4G wireless communication technologies, starting from the basics process of modulation, demodulation and its impairment. These schemes are of utmost importance to understand the concepts of current and future generations of communication system and to design the same . Student will be able to design the physical layer of 4G communication and to analyze its implementations issues. Students can perform the some simulation on Matlab to analyze the same. Understating of these techniques will further help to work in any core communication industry.

1.	Aditya K Jagannatham, Principles of Modern Wireless Communication Systems Theory and Practice, TMH, 2/e, 2017
2.	Yong Soo Cho, Jaekwon Kim, Won Young Yang, Chung-Gu Kang, MIMO-OFDM Wireless Communications with MATLAB, Wiley, 2013
3.	T. Jiang and Y.Wu, "An Overview: Peak-to-average power ratio reduction techniques for OFDM signals", IEEE Transactions on Broadcasting, vol. 54, no. 2, pp. 257–268, Jun. 2008.
4.	Y. Zhao, S.G. Häggman, "Intercarrier interference self-cancellation scheme for OFDM mobile communication systems", IEEE Transactions on Communications, 49(7), pp .1185-1191, 2001.
5.	
	Hyung G. Myung, "Introduction to single carrier FDMA", In Proceedings of 2007 15th European Signal Processing Conference, Poznan, Poland, pp. 2144-48.
6.	
	Journal articles i.e. IEEE, Springer, NPTEL video lectures.