<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	18M12EC115	Semester Ol (specify Odd	DD d/Even)	Semes 2021 Month	ter ODD Session 20)20 -
Course Name	Advanced Optical Communication Systems					
Credits	3		Contact Hours		3	

Faculty	Coordinator(s)	
(Names)	Teacher(s) (Alphabetically)	

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Develop an understanding of optical fiber, its structure, types, propagation, transmission and non-linear properties.	Remembering (C1)
CO2	Identify and examine the different kinds of losses and signal distortion along with their compensation techniques in optical Fibers.	Analyzing (C4)
CO3	Classify the Optical sources and detectors and their principle of operation and analyze different coupling techniques.	Understanding (C2)
CO4	Design short haul and long haul Analog/ Digital optical communication system with an insight into advanced optical systems.	Evaluating (C5)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Overview of Optical fiber Communications	Introduction to fiber optics, Physics of light. Principles of fiber optics: Introduction, light propagation, Skew rays. TIR condition, FTIR, Goos- hanchen shift. Effective index method to determine propagation constant, Fibers Modes, V Number analysis for optical fiber, Significance of V-b diagram, Mode Coupling, Step Index fibers, Graded Index fibers. Single mode fibers- Cut off wavelength, line width, propagation velocities. Non-linear effects in optical fiber	7
2.	Signal Degradation in Optical fibers	Signal distortion in optical fibers- Attenuation, Absorption, Scattering and Bending losses, Core and Cladding losses. Information capacity, Group delay, Types of Dispersion - Material dispersion, Wave-	7

4.	Photodetectors & Receivers	Power launching: - Output patterns, Power Coupling, Power launching, Equilibrium Numerical Aperture, Various fiber to light coupling techniques, Laser diode to fiber coupling, LED coupling to single mode fiber. Optical detectors- principles of PIN and APD, Detector response time. Temperature effect on	8
		Avalanche gain, Optical receiver: Fundamental receiver operation, Digital signal transmission, error sources, Receiver configuration, Digital receiver performance, Probability of error, Quantum limit, Analog receivers.	
5.	Optical system design	Optical Amplification, Doped fiber amplifier, semiconductor optical amplifier, Analog and digital systems. Coherent optical fiber communication systems. Modulation and line coding. Bandwidth and rise time budgets, Power budget, and dynamic range. Power penalty, Channel capacity measurement.	6
6.	Advanced Optical Systems and Networks	Wavelength Division Multiplexing. Long haul and metro WDM system, WDM system analysis, design and performance evaluation, Introduction to Photonic crystal technology, Photonic crystal fibers, Introduction to Optical Networks, Local area network, Metropolitan-Area N/W,SONET/SDH, Introduction to Free Space optical Communication.	8
7.			
		Total number of Lectures	44
Evaluation	n Criteria		<u></u>
Componer	nts Maxim	um Marks	

Rece (Te:	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	Gerd Keiser, Optical Fiber Communications, 3rd Edition, McGraw-Hill International edition, 2000.					
2.	John M. Senior, Optical Fiber Communications, 2nd Edition, PHI, 2002.					
3.	D.K. Mynbaev, S.C. Gupta and Lowell L. Scheiner, Fiber Optic Communications, Pearson Education, 2005.					
4.	Govind P. Agarwal, Fiber Optic Communication Systems, 3rd Edition, John Wiley, 2004.					
5.	Joseph C. Palais, Fiber Optic Communications, 4th Edition, Pearson Education, 2004					
6.	Journal articles i.e. IEEE, Springer, IOPscience, Elsevier and Video lectures from nanohub, NPTEL, MIT video lectures					

Detailed Syllabus

Lecture-wise Breakup

Subject		20M11EC111	Semester	: ODD	Semester: I Session:	2020-2021	
Code					Month from July to	December	
Subject Name		Advanced RF and Microwave Engineering					
Credits		3	Contact]	Hours	3		
Faculty		Coordinator(s)		Dr. Jasm	ine Saini		
(Names)		Teacher(s) (Alpha	betically)	Dr. Jasm	ine Saini		
COURSE	C OU	TCOMES- At the co	mpletion of t	he course, s	tudents will be able to	COGNITIVE LEVELS	
CO1	Develop an understanding of concepts of microwave circuits and ISM applications.		nicrowave circuits	Understanding (Level II)			
CO2	CO2 Explain the concep parameters.		ots of microwave circuits and scattering		Evaluating (Level V)		
CO3	Design and analyz		ze impedance transformers.		Analyzing (Level IV)		
CO4	CO4 Design and apply n filters,resonators et		nicrowave components like dividers, tc. in Microwave systems.		Applying (Level III)		
Module No.	Ti	tle of the Module	Topics in t	he module		No. of Lectures for the module	
1. Transmission Lines and Waveguides		Review Advantages applications transmissio small losse in micro s microstrips coupled li waveguides	of Micros, disadv s of mic n lines: le s; Quasi T triplines a , micro ines, slot s; Wave ve	Microwave Engineering; disadvantages and ISM f microwaves; TEM mode nes: lossless line, line with puasi TEM mode lines: Fields ines and striplines, losses in microstrip discontinuities, slot lines and coplanar Vave velocities.			
2.	2. Microwave Circuit Theory Principles		Equivalent ABCD p representati	voltages ar parameters; ion of	nd currents; Z, Y, S, and Equivalent circui microwave junctions	1 10 t ;	

3. Impedance Transformers Review of single-, double- and triple-stub turers; waveguide reactive elements; quarter- wave transformers; lesign of maximally flat and Chebyshev transformers; Introduction to tapered transmission lines. 6 4. Power Dividers and Couplers Scattering matrix of 3- and 4-port junctions; Design of T-junction and Wilkinson power dividers; Design of 90□ and 180□ hybrids. 6 5. Filters Analysis of periodic structures; Floquet's theorem; filter design by insertion loss method; maximally flat and Chebyshev designs. 6 7. Resonators Principles of microwave resonators; loaded, unloaded and external Q, open and shorted TEM lines as resonators; microstrip resonators; dielectric resonators. 6 Total number of Lectures 42 Evaluation Criteria Components Maximum Marks T1 20 T2 20 End Semester Examination 35 TA 25(Attendance, Performance. Assignment/Quiz) 42 Total 100 Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) 1. Collin, R.E., "Foundations for Microwave Engineering", 3rd Ed., John Wiley & Sons, 2000. 2. Pozar, D.M., "Microwave Engineering", 3rd Ed., John Wiley & Sons, 2004.			Scattering parameter analysis of microwave junctions.			
4. Power Dividers and Couplers Scattering matrix of 3- and 4-port junctions; Design of T-junction and Wilkinson power dividers; Design of 90□ and 180□ hybrids. 6 5. Filters Analysis of periodic structures; Floquet's theorem; filter design by insertion loss method; maximally flat and Chebyshev designs. 6 Resonators Principles of microwave resonators; loaded, unloaded and external Q, open and shorted TEM lines as resonators; microstrip resonators; dielectric resonators. 6 Evaluation Criteria Maximum Marks T1 20 T2 20 End Semester Examination 35 TA 25(Attendance, Performance. Assignment/Quiz) Total 42 Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) 1. Collin, R.E., "Foundations for Microwave Engineering", 2nd Ed., John Wiley & Sons,2000. 2. Pozar, D.M., "Microwave Engineering", 3rd Ed., John Wiley & Sons,2004. 20	3.	Impedance Transformers	Review of single-, double- and triple-stub tuners; waveguide reactive elements; quarter- wave transformers; design of maximally flat and Chebyshev transformers; Introduction to tapered transmission lines.	6		
5. Filters Analysis of periodic structures; Floquet's theorem; filter design by insertion loss method; maximally flat and Chebyshev designs. 6 6 Principles of microwave resonators; loaded, unloaded and external Q, open and shorted TEM lines as resonators; microstrip resonators; dielectric resonators. 6 Total number of Lectures 42 Evaluation Criteria Components Maximum Marks T1 20 20 End Semester Examination 35 7A 25(Attendance, Performance. Assignment/Quiz) Total 100 Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) 1. Collin, R.E., "Foundations for Microwave Engineering", 2nd Ed., John Wiley & Sons, 2004. 2. Pozar, D.M., "Microwave Engineering", 3rd Ed., John Wiley & Sons, 2004. 100	4.	Power Dividers and Couplers	Scattering matrix of 3- and 4-port junctions; Design of T-junction and Wilkinson power dividers; Design of 90□ and 180□ hybrids.	6		
ResonatorsPrinciples of microwave resonators; loaded, unloaded and external Q, open and shorted TEM lines as resonators; microstrip resonators; dielectric resonators.6Total number of Lectures42Evaluation CriteriaComponentsMaximum Marks T120T22020End Semester Examination35TA25(Attendance, Performance. Assignment/Quiz)Total100Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)1.Collin, R.E., "Foundations for Microwave Engineering", 2nd Ed., John Wiley & Sons,2000.2.Pozar, D.M., "Microwave Engineering", 3rd Ed., John Wiley & Sons,2004.	5.	Filters	Analysis of periodic structures; Floquet's theorem; filter design by insertion loss method; maximally flat and Chebyshev designs.	6		
Total number of Lectures 42 Evaluation Criteria Maximum Marks Components Maximum Marks T1 20 T2 20 End Semester Examination 35 TA 25(Attendance, Performance. Assignment/Quiz) Total 100 Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) 1. Collin, R.E., "Foundations for Microwave Engineering", 2nd Ed., John Wiley & Sons,2000. 2. Pozar, D.M., "Microwave Engineering", 3rd Ed., John Wiley & Sons,2004.		Resonators	Principles of microwave resonators; loaded, unloaded and external Q, open and shorted TEM lines as resonators; microstrip resonators; dielectric resonators.	6		
Evaluation Criteria Maximum Marks T1 20 T2 20 End Semester Examination 35 TA 25(Attendance, Performance. Assignment/Quiz) Total 100 Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) 1. Collin, R.E., "Foundations for Microwave Engineering", 2nd Ed., John Wiley & Sons,2000. 2. Pozar, D.M., "Microwave Engineering", 3rd Ed., John Wiley & Sons,2004.		Л	Total number of Lectures	42		
ComponentsMaximum MarksT120T220End Semester Examination35TA25(Attendance, Performance. Assignment/Quiz)Total100Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)1.Collin, R.E., "Foundations for Microwave Engineering", 2nd Ed., John Wiley & Sons,2000.2.Pozar, D.M., "Microwave Engineering", 3rd Ed., John Wiley & Sons,2004.	Evaluation	ı Criteria				
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) 1. Collin, R.E., "Foundations for Microwave Engineering", 2nd Ed., John Wiley & Sons,2000. 2. Pozar, D.M., "Microwave Engineering", 3rd Ed., John Wiley & Sons,2004.	Componen T1 T2 End Semest TA Total	ter Examination	Iaximum Marks2020203525(Attendance, Performance. Assignment/Quiz)100			
 Collin, R.E., "Foundations for Microwave Engineering", 2nd Ed., John Wiley & Sons,2000. Pozar, D.M., "Microwave Engineering", 3rd Ed., John Wiley & Sons,2004. 	Recommo Text book	ended Reading materia	1: Author(s), Title, Edition, Publisher, Year of Purnals, Reports, Websites etc. in the IEEE format)	blication etc. (
2. Pozar, D.M., "Microwave Engineering", 3rd Ed., John Wiley & Sons,2004.	1.	Collin, R.E., "Foundations for Microwave Engineering", 2nd Ed., John Wiley & Sons,2000.				
	2.	Pozar, D.M., "Microwa	we Engineering", 3rd Ed., John Wiley & Sons,20	04.		

3.	Edwards, T.C. and Steer M.B., "Foundations for Interconnects and Microstrip Design", 3rd Ed., John Wiley & Sons., 2001.
4.	Ludwig, R. and Bretchko, P., "RF Circuit Design", Pearson Education, 2000.
5.	Hunter, I., "Theory and Design of Microwave Filters", IEE Press,2001.
6.	Misra, D.K., "Radio-frequency and Microwave Communication Circuits", John Wiley & Sons,2001.
9.	https://nptel.ac.in/courses/108/101/108101112/

Detailed Syllabii Lecture-wise Breakup

Subject Co	ct Code		Semester	Semester 1 Session	2020 - 21	
		THE OTIO	Odd	Month from <u>July</u> to	o December	
Subject Na	me	Advanced Wireles	s and Mobile Communi	cations		
Credits		03	Contact Hours	03		
Faculty	Coordinator(s) 1. Pankaj Kr. Yadav					
(Names)		Teacher(s) (Alphabetically)	Pankaj Kr. Yadav			
COURSE	OUT	COMES			COGNITIVE LEVELS	
CO1	To r	eview wireless and n	obile communication, Cel	llular Concept	(Level I)	
CO2	To understand the concept of Propagation of Mobile Radio Signals			(Level II)		
CO3	To analyze the FDMA, TDMA, CDMA, OFDMA techniques wireless and mobile communication			(Level III)		
CO4	To e	valuate GSM, UMTS	and LTE Air Interface		(Level IV)	

Module No.	Subtitle of the Module	Topics in Module	No. of Lectures
1.	Introduction	Introduction to the wireless communications. Its relevance. Overview. Coverage- syllabi. Recommended reading. Evaluation Scheme.	4
2.	Cellular Concept and Engineering	Problems in mobile communication. Need for Cells. Spectrum and its utilization – frequency reuse. Cell design considerations. Cell Topology. Co-channel and adjacent – channel cells interference. Cell splitting and sectoring. Coverage and capacity of cellular system. Hand-off techniques.	8
3.	Propagation of Mobile Radio Signals	Radio wave propagation mechanism. Path loss .Outdoor and Indoor propagation models. Antenna types, size and height. Multipath propagation model .Different types of fading. Doppler effect and mobility.	6
4.	Multiple Access Techniques	FDMA, TDMA, CDMA, OFDMA techniques and their performance. Number of channels.	2
5.	OFDM in LTE	Introduction of Orthogonal Frequency Division Multiplexing, OFDM in LTE	4
6.	LTE Radio Access Networks	LTE RADIO INTERFACE; Logical, Transport and physical Channels; Reference Signals, Physical Cell ID, Time-Domain Structure, Scheduling in LTE	12

7.	LTE Advancecd and 5G RAN	Introduction of LTE-Advanced and 5G RAN; and Recent developments.	4
		Total number of Lectures	40

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	T. S. Rappaport, Wireless Communications, PHI, 2002.	
2.	Gunnar Heine, GSM Networks: Protocols, Terminology and Implementation, Artech House, 1999.	
3.	Andrea Goldsmith, Wireless Communications, Cambridge University Press, 2005	
4.	Harri Holma, Antti Toskala, LTE for UMTS: Evolution to LTE-Advanced, John Wiley and Sons, 2011	
5.	5G Technology Evolution Recommendations, 4G Americas, 2015	
6	http://www.3gpp.org/ftp/Specs/html-info/36-series.htm	

Detailed Syllabus Lecture-wise Breakup

Subject Code	16M3NEC3	61	Semeste (specify Odd/Eve	er: Even en)	Semester 10 th Session 2019-20 Month from July 19 to Dec 19
Subject Name	Estimation	n over Distributed Netwo		etworks	
Credits	3	Contact		Hours	3
FacultyCoordinator(s)1. Vikr		1. Vikram	Karwal		
(Names)		Teacher (Alphab	her(s) Vikram I habetically)		nrwal

S.No	Course Outcome	Cognitive levels/Blooms taxonomy
C121.1	To course aims to familiarize students with the importance of distributed adaptation, optimization and learning by multi-agent systems over distributed networks	Understanding Level (C2)
C121.2	The course aims to help student analyze efficient processing of Massive data using Distributed Networks.	Analyzing Level (C4)
C121.3	The course helps students understand, Importance and Need of distributed Networks.	Analyzing Level (C4)
C121.4	The course helps students to analyze local information available at individual nodes in a distributed manner.	Applying Level (C3)
C121.5	The students will be able to compute the computational complexity and compare various distributed algorithms.	Evaluating Level (C5)

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Introduction and Background Material	Important matrix and Linear Algebra results, Convexity criterion, computation of complex Gradients and Hessian, Lipschitz conditions, regression, log-logistic cost function, mean-value theorems	6

2.	Single-Agent Adaptation and Learning	Stochastic-gradient optimization, convergence and stability properties, constant and variable step size conditions, Mean-square error performance	6		
3.	Centralized Adaptation and Learning	Batch and centralized processing, convergence, stability and performance	5		
4.	Multi-Agent Network Model	Importance of Distributed Networks vs. Centralized processing, distributed adaptation over networks, distributed learning over networks, optimization over distributed networks, importance of localized interactions among agents, their applications in social networks, biological networks.	9		
5	Stability & Performance	Performance analysis of various estimation algorithms their convergence analysis, learning curves and their stability, robustness and resilience to failure, privacy and secrecy considerations among agents.	8		
6.	Advanced Network Topologies	Benefitsofco-operation,combinationstrategies,RoleofInformedAgents,AdaptiveCombinationstrategies,Asynchronous strategies,clustering	6		
		Total number of Lectures	40		
Evaluation C	riteria				
Components	Maxim	um Marks			
	20 20				
12 End Semester	12 20 End Semester Examination 35				
TA 25					
Total 100					
Recommended Reading material:					
1.	1. A. H. Sayed, Adaptation, Learning, and Optimization over Networks, NOW Publishers, 2014.				
2.	S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004				

3. T. Kailath, A. H. Sayed, B. Hassibi, Linear Estimation, Prentice Hall, 2000	
---	--

Detailed Syllabus Lecture-wise Breakup

Course Code	XXXXX	Semester: Even	Session: 2020-2021
		(specify Odd/Even)	Month from: Jan -June
Course Name	Millimeter wave techno	blogy	
Credits	3 Contact Hours 3		3
Faculty (Names) Coordinator(s)		Dr. Neetu Joshi	
	Teacher(s) (Alphabetically)	Dr. Neetu Joshi	

COURSE	OUTCOMES- At the completion of the course, students will be able to	COGNITIVE LEVELS
CO1	Understand the millimetre-wave and microwave planar transmission lines (microstrip and CPW), their classification, basic properties, field distribution and range of applications.	Understanding Level (C2)
CO2	Analyze the dielectric integrated guides and use of effective dielectric constant in the approximate analysis of dielectric guide.	Analyzing Level (C4)
CO3	Analyze the behaviour of Composite Right/Left Handed (CRLH) transmission line metamaterials.	Analyzing Level (C4)
CO4	Design and analyse RF behaviour of passive elements such as filters, resonators, couplers and splitters using lumped and distributed element models.	Analyzing Level (C4)
CO5	Design and analyse active devices such as amplifiers and oscillators using planar and non-planar transmission lines.	Analyzing Level (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Fundamental Concepts	Elements of microwave/millimeter wave integrated circuits; Classification of transmission lines: Planar, quasiplanar and 3-D structures, their basic properties, field distribution and range of applications; Substrate materials and technology used for fabrication.	5
2.	Analysis of Planar Transmission Lines	Variational approach for the determination of capacitance of planar structures; Transverse transmission line techniques for multi-dielectric planar structures; Rigorous analysis of dielectric integrated guides; Use of effective dielectric constant in the approximate analysis of dielectric guide.	12
3.	Metamaterials	Theory of Composite Right/Left Handed (CRLH) transmission line metamaterials; Representation of CRLH metamaterial by an equivalent homogeneous CRLH TL; L-	6

Total		100		
ТА		25(Attendanc	e, Performance. Assignment/Quiz)	
End Semester Examination 35		35		
T2 20		20		
T1		20		
Components		Maximum Ma	arks	
Evaluation Cri	teria			
			Total number of Lectures	42
6.	Active Circuit	5	Design and circuit realization of amplifiers and oscillators using planar and non-planar transmission lines.	6
5.	Passive Circui	ts	Design and circuit realization of filters, couplers, phase shifters, and switches using planar and non-planar transmission lines.	8
4.	Discontinuities	3	Analysis of discontinuities in planar and non-planar transmission lines and their equivalent circuit representation.	5
			C network implementation and its physical realization.	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	Edwards, T.C. and Steer M.B., "Foundations for Interconnects and Microstrip Design", 3rd Ed., John Wiley & Sons, 2001.	
2.	Wolf, I., "Coplanar Microwave Integrated Circuits", John Wiley & Sons, 2006.	
3.	Bhat, B. and Koul, S.K., "Stripline Like Transmission Lines", John Wiley & Sons, 1989.	
4.	Caloz, C. and Itoh, T., "Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications", Wiley IEEE Press, 2005.	
5.	Bhat, B. and Koul, S. K., "Analysis, Design and Applications of Finlines", Artech House, 1987.	
6.	Koul, S.K., "Millimeter Wave and Optical Dielectric Integrated Guides and Circuits", John Wiley & Sons, 1997.	
7.	Ludwig, R. and Bretchko, P., "RF Circuit Design", Pearson Education, 2000.	

Detailed Syllabus Lecture-wise Breakup

Course Code	XXXXX	Semester: Even	Session: 2020-2021
		(specify Odd/Even)	Month from: Jan -June
Course Name	Millimeter wave techno	blogy	
Credits	3 Contact Hours 3		3
Faculty (Names) Coordinator(s)		Dr. Neetu Joshi	
	Teacher(s) (Alphabetically)	Dr. Neetu Joshi	

COURSE	OUTCOMES- At the completion of the course, students will be able to	COGNITIVE LEVELS
CO1	Understand the millimetre-wave and microwave planar transmission lines (microstrip and CPW), their classification, basic properties, field distribution and range of applications.	Understanding Level (C2)
CO2	Analyze the dielectric integrated guides and use of effective dielectric constant in the approximate analysis of dielectric guide.	Analyzing Level (C4)
CO3	Analyze the behaviour of Composite Right/Left Handed (CRLH) transmission line metamaterials.	Analyzing Level (C4)
CO4	Design and analyse RF behaviour of passive elements such as filters, resonators, couplers and splitters using lumped and distributed element models.	Analyzing Level (C4)
CO5	Design and analyse active devices such as amplifiers and oscillators using planar and non-planar transmission lines.	Analyzing Level (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Fundamental Concepts	Elements of microwave/millimeter wave integrated circuits; Classification of transmission lines: Planar, quasiplanar and 3-D structures, their basic properties, field distribution and range of applications; Substrate materials and technology used for fabrication.	5
2.	Analysis of Planar Transmission Lines	Variational approach for the determination of capacitance of planar structures; Transverse transmission line techniques for multi-dielectric planar structures; Rigorous analysis of dielectric integrated guides; Use of effective dielectric constant in the approximate analysis of dielectric guide.	12
3.	Metamaterials	Theory of Composite Right/Left Handed (CRLH) transmission line metamaterials; Representation of CRLH metamaterial by an equivalent homogeneous CRLH TL; L-	6

Total		100		
TA 25(Attendar		25(Attendanc	e, Performance. Assignment/Quiz)	
End Semester Examination		35		
T2 20		20		
T1		20		
Components		Maximum Ma	arks	
Evaluation Cri	teria			
			Total number of Lectures	42
6.	Active Circuits		Design and circuit realization of amplifiers and oscillators using planar and non-planar transmission lines.	6
5.	Passive Circuits		Design and circuit realization of filters, couplers, phase shifters, and switches using planar and non-planar transmission lines.	8
4.	Discontinuities	3	Analysis of discontinuities in planar and non-planar transmission lines and their equivalent circuit representation.	5
			C network implementation and its physical realization.	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	Edwards, T.C. and Steer M.B., "Foundations for Interconnects and Microstrip Design", 3rd Ed., John Wiley & Sons, 2001.				
2.	Wolf, I., "Coplanar Microwave Integrated Circuits", John Wiley & Sons, 2006.				
3.	Bhat, B. and Koul, S.K., "Stripline Like Transmission Lines", John Wiley & Sons, 1989.				
4.	Caloz, C. and Itoh, T., "Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications", Wiley IEEE Press, 2005.				
5.	Bhat, B. and Koul, S. K., "Analysis, Design and Applications of Finlines", Artech House, 1987.				
6.	Koul, S.K., "Millimeter Wave and Optical Dielectric Integrated Guides and Circuits", John Wiley & Sons, 1997.				
7.	Ludwig, R. and Bretchko, P., "RF Circuit Design", Pearson Education, 2000.				

Detailed Syllabus

Lecture-wise Breakup

Subject	17M21EC112	Semester: ODD	Semester: I Session: 2020-2021		
Code			Month from July to December		
Subject Name	Photonics Materials & Devices for Communications				
Credits	4	Contact Hours	3-1-0		

Faculty	Coordinator(s)	Dr. Amit Kumar Goyal
(Names)	Teacher(s) (Alphabetically)	Dr. Amit Kumar Goyal

COURSE OU	COGNITIVE LEVELS	
CO1	Develop an understanding of photonic components and optical fiber technology.	Understanding (Level II)
CO2	Design and analyze different types of Photonic/Nano-photonic devices and components.	Applying (Level III)
CO3	Classify the material system/technologies along with their fabrication processes to design efficient photonic devices for communication.	Analyzing (Level IV)
CO4	Analytically evaluate the various photonic devices.	Evaluating (Level V)

Module No.	Title of the Module	Topics in the module	No. of Lectures for the module
1.	Basics of Photonics, Optical fibers and	 Photonics, integrated photonics and their brief history, Basic photonic technologies and components, Brief introduction to Maxwell's equations, wave equation, Electromagnetic waves at different dielectric interfaces. Overview of Optical fibers, types (step-index and graded index), single-mode and multimode along with their condition, birefringent 	10

		fiber, numerical aperture, Optical fiber communications, Dispersion and scattering			
		losses in fiber, budget analysis.			
2.	Optical waveguides and Photonic Devices	Optical waveguides classification, Guided modes in optical waveguides, Dispersion of guided modes, Single-mode 3-D optical waveguides. Basic integrated-optic devices: Optical power splitter, Directional coupler, thermo-optic switches, Mach-Zehnder interferometer, Arrayed Waveguide Grating (AWG)-based MUX/DEMUX, Add-drop multiplexer, Design of photonic devices: Beam Propagation Method and Marcatili's Method.	10		
3.	Fundamental of Nano-Photonic Devices and Components	Nano-photonics: Photonic crystal (PhC) technology, PhC waveguide, PhC resonator, PhC MUX/DEMUX, PhC Filters, PhC fibers, Nano-wires, Packaging of photonic devices. Recent studies on PhC based devices for communication applications.	6		
4.	Photonic Materials and Fabrication Technologies	Photonic materials, selection of materials like silicon, silica, Lithium Niobate, Compound Semiconductor and Polymers. Fabrication and process techniques like Lithography, Deposition, and Diffusion etc. Parameter measurement and techniques, recent studies on photonic materials.	10		
5.	Coupled-mode Theory and Devices	Basic concepts of coupled mode theory, Mode coupling: co-directional and contra- directional, Mode coupling in corrugated waveguides, Short-period and long-period gratings in optical fibers and optical waveguides, Properties of short-period and long-period gratings, Application of gratings in communication, and Recent trends.	8		
Total number of Lectures 44					
Evaluation Criteria Components Maximum Marks					
T120T220End Semester Examination35TA25(Attendance, Performance, Assignment/Ouiz)					

Total

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	Gerd Keiser, Optical Fiber Communications, 3rd Edition, McGraw-Hill International edition, 2000.				
2.	John M. Senior, Optical Fiber Communications, 2nd Edition, PHI, 2002.				
3.	H Nishihara, M Haruna and T Suhara, Optical integrated Circuits, McGraw-hill, 1989.				
4.	D.K. Mynbaev, S.C. Gupta and Lowell L. Scheiner, Fiber Optic Communications, Pearson Education, 2005.				
5.	C. R. Pollock and M. Lip Son, Integrated Photonics, Kluwer Pub., 2003.				
6.	T. Tamir, (ed), Guided-wave optoelectronics, (2nd edition), Springer-Verlag, 1990.				
7.	Clifford Pollock, Fundamentals of Optoelectronics, Richard Irwin Inc., Chicago, 1995.				
8.	Journal articles i.e. IEEE, Springer, IOPscience, Elsevier and Video lectures from nanohub, NPTEL, MIT video lectures				
9.	https://nptel.ac.in/courses/117/108/117108142/				

					<u>Detailed S</u> Lecture-wise	<u>Syllabus</u> e Breakup				
Course Code 17M12EC1		17M12EC12	29	Semester Odd (specify Odd/Even)		Semester 2 nd Session 2019-20 Month from January to June		n 2019-20 to June		
Cour	se Na	me	Selected To	pics in V	Wireless Comm	nunication	-			
Cred	its			3		Contact I	Hours		3	
Facu	lty (N	ames)	Coordinato	r(s)	Dr. Ankit Garg	5				
			Teacher(s) (Alphabetica	ally)	Dr. Ankit Garg	5				
COU At the	RSE e end	OUTCO of the se	DMES emester, studen	ts will b	e able to				CO LE	GNITIVE VELS
CO1	Lea the	rn how to help of N	o find the mome Aoment Generat	ents of rar ing Func	ndom distribution tion (MGF)	with			Un g (C	derstadin Level 150.2)
CO2	Develop the ability to study different wireless fading channels/distributions and explore transmit and receive diversity									
CO3	Anal Chan	yze the p inel capa	erformance of d city etc., both w	ifferent f ithout div	ading channels in versity and with di	terms of BE iversity tech	ER, Outage niques	Probability,	An Le	alyzing vel(C150.4)
CO4	Dem viz.,	onstrate MIMO, (the ability to cor Cooperative con	nprehend municat	and develop advation, OFDM, etc.	anced wirele to test for im	ss modelin proved pe	ng techniques rformance.	Ana Leve	lyzing el(C150.4)
Modu No.	ule	Title o Modul	f the le	Topics in the Module				No. of Lectures for the module		
1.	Introduction, Probability and Random ProcessPDF, CDF, Random variable transformation, Momen Generating function (MGF), order statistics, Gaussian random variable, AWGN, PSD, Autocorrelation.					ient sian	6			
2.	2. Fading and Wireless channel modeling			Generic model for fading Channels, Composite fading channel model, Wireless Channel Fading and Distribution: Small scale, large scale and multipath fading channels. Rayleigh, Rician, Exponential, Nakagami-m, Chi-squared, Diversity modeling for Wireless Communications: Beamforming and MRC.			8			
3.	3. Performance Analysis of Wireless			BER/SER Performance in Fading Channels for 12 different modulation techniques, Maximal Likelihood, Zero Forcing and Minimum Mean Square Error			12			

	Communication System and Diversity	Detection techniques, Channel capacity in AWGN, Outage Probability, Channel capacity for fading channel, capacity with channel side information(CSI) at receiver, capacity with CSI both at transmitter and receiver, Asymptotic Analysis, Coding gain, diversity gain.			
4	Collocated and Distributed MIMO systems	Introduction to MIMO, MIMO Channel Capacity, SVD and Eigen modes of the MIMO Channel, MIMO Spatial Multiplexing – BLAST, MIMO Diversity – Alamouti, OSTBCs, Precoding, Introduction to Cooperative Systems: Amplify-and-Forward (AF), Decode-and-Forward (DF) based Cooperative Relaying – BER, Outage Probability and Diversity, Recent developments.	12		
5.	Introduction: OFDM Systems	Introduction to Multicarrier Modulation, OFDM, Cyclic Prefix, SNR performance, OFDM Issues – PAPR, Frequency and Timing Offset Issues	7		
		Total number of Lectures	45		
Eval	uation Criteria				
Com	ponents	Maximum Marks			
T1	-	20			
T2		20			
End	Semester Examination	35			
ТА		25 (Attendance, Assignments, Quiz)			
Tota	1	100			
Reco Refe	mmended Reading materia rence Books, Journals, Repo	al: Author(s), Title, Edition, Publisher, Year of Publication etc. rts, Websites etc. in the IEEE format)	(Text books,		
1.	 Arogyaswami Paulraj, Dhananjay Gore, and Rohit Nabar, "Introduction to Space-Time Wireless Communications", Cambridge University Press, 2007 				
	Erik G. Larsson and Petr	e Stoica, "Space-Time Block Coding for Wireless Commu	inications".		

Ezio Biglieri, "MIMO Wireless Communications", Cambridge University Press, 2007.

Marvin Kenneth Simon, Mohamed-Slim Alouini, "Digital Communication over Fading

Aditya K. Jagannatham, "Principles of Modern Wireless Communication Systems", McGraw-

K. J. Ray Liu, Ahmed K. Sadek, Weifeng Su, Andres Kwasinski, "Cooperative Communications

2.

3.

4.

5.

6

Cambridge University Press, 2003

and Networking", Cambridge University Press, 2009.

Hill Education, 2017

Channels", Willey, 2005.

<u>Detailed Syllabus</u> Lecture-wise Breakup					
Course Code		Semester Odd (specify Odd/Even)		Semester Session Month from	
Course Name	Software Defined Ra	dio and Cogn	itive Radio	o Networ	k
Credits	3		Contact H	Iours	3

Faculty (Names)	Coordinator(s)	Dr. Vivek Dwivedi
	Teacher(s) (Al- phabetically)	NIL

COURSE OUTCOMES		COGNITIVE LEVELS	
CO1	Understand the concepts of Software Defined Radio (SDR) and its architecture	Understanding (Level II)	
CO2	Understand the concepts of radio (CR) architecture, functions of cognitive radio	Understanding (Level II)	
CO3	Analyzing the Spectrum sharing and management and Spectrum sensing methods	Analyzing (Level IV)	
CO4	Evaluating the performance of Next Generation Wireless Networks	Evaluating (Level V)	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1	Software Defined Radio (SDR)	Essential functions of the SDR, SDR architecture, design principles of SDR, traditional radio imple- mented in hardware and SDR, transmitter architec- ture and its issues, A/D & D/A conversion, parame- ters of practical data converters, techniques to im- prove data converter performance, complex ADC and DAC architectures, digital radio processing, recon- figurable wireless communication systems.	8

2.	Cognitive Radio (CR) features and architecture	Cognitive Radio (CR) features and capabilities, CR functions, CR architecture, components of CR, CR and dynamic spectrum access, interference tempera- ture, CR architecture for next generation networks, CR standardization.	8
3.	Spectrum sensing	Spectrum sensing and identification, primary signal detection. energy detector, cyclostationary feature detector, matched filter, cooperative sensing, spectrum opportunity, spectrum opportunity detection, fundamental trade-offs: performance versus constraint, sensing accuracy versus sensing overhead.	10
4	Spectrum man- agement of cogni- tive radio net- works	Spectrum decision, spectrum sharing and spectrum mobility, mobility management of heterogeneous wireless networks, Cooperation and cognitive sys- tems and research challenges in CR	10
5.	Next Genera- tionWireless Net- works	Control of CRN, Self-organization in mobile com- munication networks, security in CRN	6
		Total number of Lectures	42
Evaluation CriteriaComponentsMaximum MarksT120T220End Semester Examination35TA25			
Total		100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	Kwang-Cheng Chen and Ramjee Prasad, "Cognitive Radio Networks", John Wiley & Sons, Ltd, 2009.	
2.	Alexander M. Wyglinski, Maziar Nekovee, and Y. Thomas Hou, "Cognitive Radio Communica- tions and Networks - Principles and Practice", Elsevier Inc., 2010.	
3.	Jeffrey H. Reed "Software Radio: A Modern Approach to radio Engineering", Pearson Education Asia.	