Subject Code	15M3NCI231	Semester : ODD	Session Month July-December 2024			
Subject Name	E-Commerce and Social Web					
Credits	3	Contact Hours 3-0-0				
Faculty	Coordinator(s)	Dr. Kapil Madan				
(Names)	Teacher(s)	Dr. Kapil Madan				
Module No.	Subtitle of the Module	Topics in the module		No. of Lectures for the module		
1.	Introduction and overview of e- Commerce	Definition and models of e-commerce Selection of an E-commerce type and Business models based on (1) Transac Transaction Types. Case Studies of th	Definition and models of e-commerce and examples. Selection of an E-commerce type and business model. Business models based on (1) Transaction Parties (2) Transaction Types. Case Studies of the Indian context.			
2.	Introduction to Social Web	Social Web overview, data-types, form tagging and storage, Social media tech platforms, data-visualization of data, re applications and challenges in social W	3			
3.	Introduction to Social Commerce	Introduction to Social Commerce, S and Concepts for Social Commerce, T for Social Commerce	3			
4.	Social Network Analysis for Startups	Analyzing Social web, Nodes, Ec measures, Centrality, Power and Bott Cliques, Clusters and Components Graph data in real world, Business Privacy in Social web	4			
5.	Social Shopping	Social Media Marketing, Social SI Benefits, and Models, Customer Enga	4			
6.	Programming using API and RSS feeds	Introduction to OAuth protocol, Crawling Social media using Twitter YouTube API, LinkedIn API, and Ne	5			
7.	Twitter and Facebook Data Analytics for Viral Marketing	Topic-based Clusters in Egocent Facebook, Changes in Tie Strength T Facebook, Patterns of Responses to R Facebook, Exploring requests for Analysis of User-Generated Cont Predicting Clicks on Ads, Predicting contributors to the Facebook crowdso	8			
8.	Creating Suggestions and Recommendations	Perform web-market segmen recommendations: collaborative filt based filtering approaches, creatin building recommendation engine recommendation engines based on content, Finding recommendations ab and news stories, Creating recomm similar to Netflix	ntation, making ering and content- g suggestions and es, understanding users, items, and out friends, articles, nendations for sites	5		

9.	Developing Server side solutions using advanced java technology	Quick Review of Java Servlet Technology, Servlet Lifecycle, HTTP Servlet Basics, HttpSession, HttpRequest-Response, Retrieving and sending information, Servlet Session Tracking, Handling Cookies, Invoking Java Code with JSP Scripting Elements, JSP page Directive, Including Files in JSP Pages, Using JavaBeans in JSP Documents, Integrating Servlets and JSP (MVC) Architecture.	7
		Total number of Lectures	42

Recomme Reference	ended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, e Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Michael P Papazoglou and Pieter M.A. Ribbers, "e-Business- Organizational and technical foundation", John Wiley and Sons, 2006.
2.	Efraim Turban, David King, Dennis Viehland, Jae Lee, "Electronic Commerce A Managerial Perspective 2006", 4ed, Pearson Education International edition, 2006.
3.	Stephen Chen, "Strategic management of e-business", second edition, John Wiley and Sons, 2005.
4.	RS Prasad, "Cyber crime: An Introduction", ICFAI Books, ICFAI University, 2004.
5.	RS Prasad, "Cyber crime: Combat Strategies", ICFAI Books, ICFAI University, 2004.
6.	RS Prasad, "CRM Present and Future", ICFAI Books, ICFAI University, 2005.
7.	Elaine Lawrence et al, "Internet commerce – Digital models for Business", John Wiley and Sons, 2003.
8.	Abhijit Choudhury and Jean-Pierre Kuilboer, "E-business and E-Commerece Infrastructure – Technologies supporting E-Business Initiative", McGraw Hill, 2002.
9.	Henry Chan et al, E-Commerece – fundamentals and applications", John Wiley and Sons,2001.
10.	Programming Collective Intelligence: Building Smart Web 2.0 Applications by Toby Segaran
11.	Algorithms of the Intelligent Web Haralambos Marmanis, Dmitry Babenko
12.	Recommender Systems: An Introduction Dietmar Jannach (Author), Markus Zanker (Author), Alexander Felfernig (Author), Gerhard Friedrich
13.	Recommender Systems Handbook Francesco Ricci (Editor), Lior Rokach
14.	Recommendation Systems in Software Engineering Martin P. Robillard (Editor), Walid Maalej (Editor), Robert J Walker (Editor), Thomas Zimmermann

Machine Learning and Data Mining Lab (17M15CS112) Detailed Syllabus

Course Code	17M15CS112	Semester: Od	ester: Odd 2024 Semester: I Session 2024 -20		er: I Session 2024 -2025
				Month f	rom: July – December 2024
Course Name	Machine Learning an	and Data Mining Lab			
Credits	1	Contact		Hours	2
Faculty (Names)	Coordinator(s)	Dr. Amit Mishra			
	Teacher(s) (Alphabetically)	Dr. Anita Saho	oo, Dr. Ami	t Mishra	

COURSE	COGNITIVE LEVELS	
C173.1	Perform data preprocessing, data sampling and visualization.	Understanding (Level-2)
C173.2	Apply Linear regression, Logistic regression, kNN, k Means, SVM and ID3 on different datasets.	Apply (Level-3)
C173.3	Implement Apriori algorithm and Eclat algorithm in R.	Apply (Level-3)
C173.4	Apply neural networks such as ANN, BPN and CNN to different datasets.	Apply (Level-3)
C173.5	Evaluate and analyze different machine learning models on the basis of their performances.	Evaluate (Level-5)

Mod ule No.	Title of the Module	List of Experiments	СО
1.	Python for data sampling and Visualization	a. To write a program for writing the pixel values of an imageb. Write programs for Data Sampling (given dataset).	1
2.	Python for text processing	Use IPython (a web version provided by Jupyter notebook) to write a word count program. Your program should read a text document (download from https://raw.githubusercontent.com/python/cpython/master/	1
3.	Classification- 1	Implement kNN algorithm using Python. Consider the iris dataset and report the accuracy of classification. [May take help from : <u>https://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/</u>]	2
4.	Clustering	Clustering: Implement kMeans Algorithm	2
5.	Classification- 2	Classify the wine dataset of UCI Repository by ID3.	2
6.	Data Mining-1	Implement Logistic Regression on a sample dataset	2
7.	Data Mining-2	Implement apriori and Eclat algorithm for association rule mining in R	3
8.	SVM-1	Apply Support Vector Machine on the dataset of question the Parkinson dataset given in <u>https://archive.ics.uci.edu/ml/datasets/Parkinson+Dataset+with+replicated+acoustic+features+</u> .	2
<mark>9.</mark>	Comparison of Classification algorithms	Compare the classification of Iris dataset by different algorithms namely kNN, ID3 and SVM. Report accuracy and other performance measures. Implement neural networks for Classification of <i>four</i> character patterns	5

<mark>10.</mark>	ANN	Apply Multi Layer Percepron for supervised learning (problem statement to be given individually)	4
<mark>11.</mark>	BPN	Use back propagation for supervised learning. For the data based on 1990 census data from California.Evaluate the accuracy of a model's predictions using RMSE.	4
<mark>12.</mark>	CNN CNN	Implement CNN using TensorFlow for classifying MNIST images	4
Evalua	tion Criteria		
Compo	onents	Maximum Marks	
Lab Te	st1	20	
Lab Te	st2	20	
D2D		50	
Attenda	ance	10	
Total		100	

PBL- Students in a group of 4-5 will be designing an efficient solution to a given problem / case-studies using appropriate Machine Learning and Data mining Technique studies in the course.

Rec	commended Reading material:
Tex	at Books:
1.	Jiawei, Han, and Kamber Micheline. Data mining: concepts and techniques. Morgan kaufmann, 2006.
2.	Chakrabarti, Soumen, Richard E. Neapolitan, Dorian Pyle, Mamdouh Refaat, Markus Schneider, Toby J. Teorey, Ian H. Witten et al. <i>Data mining: know it all</i> . Morgan Kaufmann, 2008.
3.	Trueblood, Robert P., and John N. Lovett. <i>Data mining and statistical analysis using SQL</i> . Vol. 1. Berkeley, CA: Apress, 2001.
4.	Kimball, Ralph, and Margy Ross. The data warehouse toolkit: the complete guide to dimensional modeling. John Wiley & Sons, 2011.
5.	Pujari, Arun K. Data mining techniques. Universities press, 2001.
Ref	erence Books:
1.	Mining, What Is Data. Introduction to data mining. New Jersey: Pearson Education, Inc, 2006.
2.	Chakrabarti, Soumen. <i>Mining the Web: Discovering knowledge from hypertext data</i> . Morgan Kaufmann, 2002.
3.	Berson, Alex, and Stephen J. Smith. Data warehousing, data mining, and OLAP. McGraw-Hill, Inc., 1997.
4.	Inmon, William H. Building the data warehouse. John wiley & sons, 2005.
5.	Anahory, Sam, and Dennis Murray. Data warehousing in the real world: a practical guide for building decision support systems. Addison-Wesley Longman Publishing Co., Inc., 1997.
6.	Dunham, Margaret H. Data mining: Introductory and advanced topics. Pearson Education India, 2006.
7.	Subasi, Abdulhamit. Practical machine learning for data analysis using python. Academic Press, 2020.
8.	Putatunda, Sayan. <i>Practical Machine Learning for Streaming Data with Python</i> . Berkeley, CA: Apress, 2021.

Detailed Syllabus Lab-wise Breakup

HOTE. MIL								
Course Code		17M15CS113	Semester	Semester	•	Session 2024-25		
			Odd 2024	Month fr	rom J	uly to Dec, 2024		
Course Name		Cloud Technolog	y Lab					
Credits		1	Contact I	Hours		2 Hours		
Faculty (Names)		Coordinator(s)	Dr Prakash Kumar					
Teac (Alp		Teacher(s) (Alphabetically)	Dr. Prakash Kumar Mr. Prashant Kaushik					
COURSE	OUTCO	OMES				COGNITIVE LEV	COGNITIVE LEVELS	
C171.1	Demon Deploy	nstrate the architectu went models etc.	re and layers of Cloud Se	ervice Mod	dels,	Understand (level 2	2)	
C171.2	Provis allocat	ioning of Data Cente	ers, Virtual Machines (VMs	s) and clou	ıdlet	Apply (level 3)	- /	
C171.3 CloudSim Amazon Web		ze various Schedulin re their performanc Sim, Amazon Web Se	ng techniques and resources on different Cloud P rvices (AWS).	ce allocati latforms,	ions, like,	Analyze (level 4)		
C171.4	Evalua perform	te the various C mances using AWS pl	loud Services provisioninatforms, Containers and Doc	ng and teckers.	their	Evaluate (level 5)		
Module No. Title of the Module		le of the Module	List of Experiments				СО	
1.		CloudSim installations, VM Understand the Cloud Service Models, Deployment Models, Various Cloud Layers, Data Centers, Virtualization Technology, Virtual Machines (VMs), Virtual Machine Monitors (VMMs).			CO1			
2.	c	reation and usage	Provisioning of Data Centers, Virtual Machines (VMs) on CloudSim. Allocate different Cloudlets to VMs and Data Centers using different scheduling algorithms.				CO2	
3.			Centers using different sche	eduling algo	s to v orithn	Ns and Data		
	Scl	Analyze various neduling algorithms	Centers using different sche Create different Data Cente and analyze the outcomes	eduling algorithms and allow	s to v orithn cate th	ns and Data ns. ne VMs to them	CO3	
4.	Scl in o	Analyze various neduling algorithms different scenarios n cloudsim, AWS	Centers using different sche Create different Data Cente and analyze the outcomes Analyze various Scheduling allocations supported by Cl AWS., Their performance e Platforms, like, CloudSim a	g technique oud Platfor evaluations and Amazon	s to v orithm cate th es and rms, e on din n Web	ns and Data ns. ne VMs to them resource .g. CloudSim and fferent Cloud o Services (AWS).	CO3 CO3	
4. 5.	Scl in o Sc AV	Analyze various neduling algorithms different scenarios n cloudsim, AWS Evaluate Cloud ervice provision on WS, Containers and Dockers.	Centers using different sche Create different Data Cente and analyze the outcomes Analyze various Scheduling allocations supported by Cl AWS., Their performance e Platforms, like, CloudSim a Evaluate the various Cloud performance evaluations us Storage Service, Containers	g technique oud Platfor evaluations and Amazor Services pr ing AWS 1 s and Docke	s to v orithm cate th es and tms, e on di n Web rovisio ike E0 ers.	ins and Data is. ie VMs to them resource .g. CloudSim and fferent Cloud o Services (AWS). oning and their C2, RDS, Simple	CO3 CO3 CO4	
4. 5. n.	Scl in o Se AV	Analyze various neduling algorithms different scenarios n cloudsim, AWS Evaluate Cloud ervice provision on WS, Containers and Dockers.	Centers using different sche Create different Data Cente and analyze the outcomes Analyze various Scheduling allocations supported by Cl AWS., Their performance e Platforms, like, CloudSim a Evaluate the various Cloud performance evaluations us Storage Service, Containers	g technique oud Platfor evaluations and Amazon Services pr ing AWS 1: and Docke	s to v orithm cate th es and tms, e on di n Wel rovisio ike E0 ers.	ins and Data is. ine VMs to them resource .g. CloudSim and fferent Cloud o Services (AWS). oning and their C2, RDS, Simple	CO3 CO3 CO4	
4. 5. <i>n</i> . Evaluation	Scl in o Se AV 	Analyze various neduling algorithms different scenarios n cloudsim, AWS Evaluate Cloud ervice provision on WS, Containers and Dockers.	Centers using different sche Create different Data Cente and analyze the outcomes Analyze various Scheduling allocations supported by Cl AWS., Their performance e Platforms, like, CloudSim a Evaluate the various Cloud performance evaluations us Storage Service, Containers 	g technique oud Platfor evaluations and Amazon Services pl ing AWS 1: and Docke	s to v orithm cate th es and rms, e on di n Wel rovisie ike E0 ers.	Als and Data hs. he VMs to them resource .g. CloudSim and fferent Cloud to Services (AWS). oning and their C2, RDS, Simple	CO3 CO3 CO4	
4. 5. n. Evaluation Componen Lab Test# Lab Test# D2D work	Scl in o Sce AV Criter its 2	Analyze various neduling algorithms different scenarios n cloudsim, AWS Evaluate Cloud ervice provision on WS, Containers and Dockers. ia Maxin 20 20 60 (E	Centers using different sche Create different Data Cente and analyze the outcomes Analyze various Scheduling allocations supported by Cl AWS., Their performance e Platforms, like, CloudSim a Evaluate the various Cloud performance evaluations us Storage Service, Containers 	ks, Attenda	s to v orithm cate th s and ms, e on di n Wel rovisio ike EC ers.	Ins and Data Ins. Ine VMs to them resource .g. CloudSim and fferent Cloud to Services (AWS). Inoning and their C2, RDS, Simple 10 marks)	CO3 CO3 CO4	

Project Based Learning: A group of maximum 2 students are to be formed. Each group shall choose a Cloud based project. The project shall be designed and/or modeled based on Cloud Platform like AWS, Google cloud, Eucalyptus, CloudSim, iFogSim or any other Cloud Platform, preferably open source platforms and tools. The project shall function and run as per the objective of the project. Live demonstration of the project shall be shown during their presentation. The project evaluation shall be done based on the quality, innovation, relevance and creativity involved.

Reco Refe	commended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, rence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	K. Hwang, Geoffrey C. Fox, Jack J. Dongarra, "Distributed and Cloud Computing- From Parallel Processing to the Internet of Things", Morgan Kauffman Publishers, Elsevier.
2	George Reese, "Cloud Application Architectures: Building Applications and Infrastructure in the Cloud" O'REILLY publication.
3	"Virtualization Overview", White paper, VM Ware.
4.	Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De Rose, and Rajkumar Buyya, CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms, Software: Practice and Experience, Volume 41, Number 1, Pages: 23-50, ISSN: 0038-0644, Wiley Press, New York, USA, January 2011.
5.	Tom Guérout, Thierry Monteil, Georges Da Costa, Rodrigo Neves Calheiros, Rajkumar Buyya, Mihai Alexandru, Energy-aware Simulation with DVFS, Simulation Modelling Practice and Theory, Volume 39, No. 1, Pages: 76-91, ISSN: 1569-190X, Elsevier Science, Amsterdam, The Netherlands, November 2013.
6.	Rajkumar Buyya, Rajiv Ranjan and Rodrigo N. Calheiros, Modeling and Simulation of Scalable Cloud Computing Environments and the CloudSim Toolkit: Challenges and Opportunities, Proceedings of the 7th High Performance Computing and Simulation Conference (HPCS 2009, ISBN: 978-1-4244-4907-1, IEEE Press, New York, USA), Leipzig, Germany, June 21 - 24, 2009 Keynote Paper.
7.	https://www.docker.com
m.	

COs	PO 1	PO 2	PO 3	PSO1	PSO2
C171.1	2	2	2	1	1
C171.2	2	2	2	1	2
C171.3	2	1	1	1	1
C171.4	1	1	2	2	2
AVG.	2	2	2	1	2

1. <u>CO-PO and CO-PSO Mapping (M. Tech- CSE) I sem:</u>

COs	PO 1	PO 2	PO 3	PSO1	PSO2
C171.1	2 Basics of Cloud services demonstrated	2 Basic principles and architectures of Cloud model is demonstrated	2 Various Cloud Service types and deployment models are demonstrated	1 Role of Virtualization Technology in Cloud Model is demonstrated	1 Data Center, Virtual Machine creation and usage is demonstrated
C171.2	2 Provisioning of Data Center and VMs on CloudSim platform	2 Allocation of Virtual Machines to Data Centers and Hosts	2 Applying various scheduling algorithms for VM provisioning and cloudlet allocations	1 Allocate Cloudlets to VM and Data Centers	2 Applying various scheduling algorithms for Cloudlet allocations on VMs
C171.3	2 Creating VMs and Instances on Amazon Web Services (AWS)	1 Analysing the behaviour of scheduling techniques	1 Analysis of instances on AWS, Elastic Compute Cloud (EC2) etc.	1 Analysis of Simple Storage Service (S3)	1 Analysis of other AWS Services, viz, Relational Database Service (RDS).
C171.4	1 Evaluation of AWS, Elastic Compute Cloud (EC2) features	1 Evaluation of AWS storages and their features, namely, Simple Storage Service (S3), Relations Database Services (RDS)	2 Performance evaluations of instances on AWS, EC2, storage and other services.	2 Performance Evaluation of Containers and their benefits over Virtual Machines.	2 Performance Evaluation of Dockers and their applications.
AVG.	2	2	2	1	2

Detailed Syllabus

Lecture-wise Breakup

Subject Code	23M12CS113	Semester Odd (specify Odd/Even)	Semester Odd Session 2024-2025 Month from July 24 to December 24		
Subject Name	Software Quality and Testing				
Credits	3	Contact Hours	3-0-0		

Faculty	Coordinator(s)	Dr. Indu Chawla
(Names)	Teacher(s) (Alphabetically)	Dr. Indu Chawla

CO	URSE OUTCOMES	COGNITIVE LEVELS
1.	Describe software quality management processes in the context of Software	Understand
	Development and Engineering.	Level
		(Level 2)
2.	Utilize quality standards, factors, metrics and models for quality improvement.	Apply Level
		(Level 3)
3.	Infer the defects and manipulate them for improvement in quality for given	Apply Level
	Software.	(Level 3)
4.	Examine the different testing processes for appropriate testing strategy.	Analyze Level
		(Level 4)

S.N.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Overview and Challenges	Overview of Software quality in the context of software development, quality frameworks, perspectives and expectations. Software errors: causes and classification	3
2.	Software quality models and factors	Software quality models: generalized, product specific, their comparison and interactions, Software quality factors: Product operations, revision and transition.	4
3.	Software quality Metrics	Software quality Metrics such as product quality metrics, in process quality metrics, metrics for software maintenance	4
4.	Software quality standards	Scope of quality management standards, SPI, CMMI and six sigma certifications	3
5.	Quality Assurance	Quality assurance techniques and comparisons, Defect prevention and process improvement.	6

6	Quantifiable Quality improvement	Quality assurance monitoring and measurement, immediate follow up actions and feedback.	4			
7.	Software testing	Test activities, management and automation, Input domain partitioning and Boundary testing, Control flow, data Dependency and Interaction testing	6			
8.	Software testing	Goals of Testing Software, Model-Driven Test Design, Test Automation, Input Space Partitioning, Graph Coverage, Logic Coverage, Syntax-based Testing	6			
9.	Coverage and usage testing	Coverage and usage testing based on checklists, partitions, Finite state machines and Markov Chains	6			
Total nu	mber of Lectures		42			
Evaluatio	on Criteria					
T1 T2 End Sem TA Total	ComponentsMaximum MarksF120F220End Semester Examination35TA25 Assignment/Quiz/Mini-project (15 Marks) Attendance (10 Marks)Total100					
Project b in open study usi	based learning: Each Stud source projects. They w ing Software quality and	dents in group of 3 to 4 will study about implications of softwar vill present a detailed report or demonstrate the solution pro I testing techniques will help their employability into IT sector.	e quality and testing posed. This detailed			
Recomm books, F	nended Reading mate Reference Books, Jourr	erial: Author(s), Title, Edition, Publisher, Year of Publicationals, Reports, Websites etc. in the IEEE format)	on etc. (Text			
Text Bo	oks					
1.	Daniel Galin, Software Quality: Concepts and Practice, Wiley, 2018					
2.	Paul Ammann and Jeff Offutt, Introduction to Software Testing, Cambridge University Press, 2016					
Referen	ice Books					
1.	Kamna Malik, Praveen Choudhary, Software Quality- A practitioner's approach, Tata Mc Graw Hill, 2009					
2.	Jeff Tian, Software Quality Engineering: Testing, Quality Assurance, and Quantifiable Improvement, Wiley India Pvt Ltd, 2005					
3.	Gillies, Alan C., Softwa	Gillies, Alan C., Software quality : theory and management, Cengage Learning, 2014				
4.	Software Quality Journal-https://www.springer.com/journal/11219					

4.

<u>Detailed Syllabus</u> Lecture-wise Breakup

Cour	se Code	23M12CS114	Semester Even (specify Odd/Even)		Semester1stSession2024-25Month fromJuly 2024 to Dec 2024	
Cour	rse Name	Computer Vision				
Cred	its	3	Contact Hours 3-0-0		3-0-0	
Faculty (Names)		Coordinator(s)	Dr. Ankit Vidy	yarthi		
		Teacher(s) (Alphabetically)	Dr. Ankit Vidy	yarthi		
COURSE OUTCOMES						COGNITIVE LEVELS
CO1	CO1 Understand the fundamental concepts of Computer Vision					Understand Level (Leve 2)

CO2	Understand basic concepts, terminology, theories, models and methods in the field of computer vision	Understand Level (Level 2)
CO3	Determine known principles of human visual system	Apply Level (Level 3)
CO4	Illustrate methods related to multi-scale representation, edge detection and detection of other primitives, stereo, motion and object recognition	Analyzing Level (Level 4)
CO5	Predicting a design of a computer vision system for a specific problem	Evaluate Level (Level 5)

COs	PO1: An ability to independently carry out research/ investigation and development work to solve practical problems	PO2: An ability to write and present a substantial technical report/document	PO3: Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program	PSO 1: Students should be able to develop and implement the solution of real-life computing problems using contemporary technologies	PSO2: Students should be able to apply ethical principles and commit to professional and social responsibilities
C01	1 Covers definitions, vision components introduction, and their use		2 Covers general terminologies used to understand the vision systems	3 Basic fundamentals help to build the vision pipeline for problem representation	
CO2	02 2 Vision problems require an understanding of models and their working to solve practical problems society		3 To solve a specific problem having multiple methods and identification of the best among all	3 Solving the problems using the hybridization of the vision systems with existing algorithms	
CO3			1 Human visual perspective to solve specific problems		
CO4	2 Covers image representation using the frequency bands	2 Representation of the images to understand the hidden pattern		3 Covers a wide range of algorithms for object representation and template matching	2 various problems of the society handled using the multi-scale representation
CO5	3 Design of a vision system for a specific problem		2 Building new algorithms and procedures for vision problems	3 New design and algorithms for specific problems	
AVG.	2	2	2	2	2

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Introduction of Computer Vision, Monocular imaging system, Orthographic& Perspective Projection, Cameramodel and Camera calibration, Binocular imaging systems	4
2.	ImageProcessingandFeaturerepresentation	Image representations (continuous and discrete), Edge detection, Image filtering, Thinking in frequency, Image pyramids and applications	6
3.	Feature Detection and Matching	Edge detection, Interest points and corners, Local image features, Feature matching and hough transform, Model fitting and RANSAC	8
4.	Motion Estimation	Regularization theory, Opticalcomputation, StereoVision, Motionestimation,Structure from motion, Feature Tracking and Optical Flow	10
5.	Shape Representation and Segmentation	Deformable curves and surfaces, Snakes and active contours, Level set representations, Fourier and wavelet descriptors, Medialrepresentations, Multi-resolution analysis	8
6.	Object recognition	Hough transforms and other simple object recognition methods, Shapecorrespondence and shape matching, Principal Component analysis, Shape priors for recognition, Mixture of Gaussians and advanced feature encoding	6
		Total number of Lectures	42
Evaluation	n Criteria		
Components T1 Examination T2 Examination End Semester Examination TA Total		Maximum Marks 20 20 35 25 (Attendance (10), Tutorial/Quiz/Class-Test/ (5), Mini Proje 100	ect(10))
Project Based Learning: Students in a group of 2 will take some real world problem and apply AI logics to solve the healthcare problem in a meaning way. Students can able to understand the core logic about data handling and processing.			

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

	Text Books
1.	Forsyth DA, Ponce J. Computer vision: a modern approach. prentice hall professional technical reference; 2002
2	Lakshmanan V, Görner M, Gillard R. Practical machine learning for computer vision. " O'Reilly Media, Inc."; 2021
	Reference Books
3.	Szeliski, R Computer vision: algorithms and applications. Springer Nature, (2022)
4.	Chen K, Schönlieb CB, Tai XC, Younes L, editors. Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging: Mathematical Imaging and Vision. Springer; 2023
5.	Chowdhary CL, Reddy GT, Parameshachari BD. Computer Vision and Recognition Systems: Research Innovations and Trends. CRC Press; 2022

Detailed Syllabus Lab-wise Breakup

Course Code	17M15CS111	Semester OD	D	Semeste Month	er I Session 2024 -2025 from July to Dec 2024
Course Name	Advanced Algorithms Lab				
Credits	1		Contact I	Hours	2

Faculty (Names)	Coordinator(s)	Manish Kumar Thakur
	Teacher(s) (Alphabetically)	Manish Kumar Thakur

COURSE OUTCOMES		COGNITIVE LEVELS
C170.1	Implement algorithms and use appropriate advanced data structures for solving computing problems.	Level 3: Apply
C170.2	Design algorithms using divide-and-conquer, greedy and dynamic programming strategies, and further recite algorithms that employ these strategies.	Level 3: Apply Level 5: Evaluate
C170.3	Illustrate the mathematical foundation of network flows and some important flow algorithms.	Level 2: Understand Level 3: Apply
C170.4	Implement randomized algorithms to solve various problems, and validate their correctness and complexity.	Level 3: Apply Level 4: Analyze
C170.5	Understand P, NP, polynomial reduction, NP-hardness, and NP-Completeness.	Level 2: Understand Level 4: Analyze
C170.6	Comprehend and select algorithm design approaches in a problem specific manner.	Level 6: Create

Module No.	Title of the Module	List of Experiments	СО
1.	Fundamentals of data structures and algorithmic problem solving	Searching, Sorting, time complexity, Heaps, Arrays, Linked List, Trees, Fibonacci heaps, splay trees, dynamic trees.	CO1
2.	Divide and Conquer Technique	Solving Matrix multiplication problem and subset- sum problem using divide-and-conquer approach	CO2
3.	Greedy Algorithms	Greedy Approximation algorithms- Set Cover Problem, K Centers Problem, Fractional and 0/1 Knapsack, Coinage problem; Bin packing; Job scheduling, Graph coloring; and Text compression using Huffman coding and Shannon-Fanon coding.	CO2
4.	Dynamic Programming Technique	Fundamentals of Dynamic programming based solution approach, Printing Shortest Common Super sequence, Dynamic Programming on Trees, Maximum sum rectangle in a 2D matrix.	CO2
5.	Graph Algorithms	Solve and analyze Graph problems, Algorithms. All Pair Shortest Problem, Subset-sum problem. Minimum Spanning Trees (Prim's and Kruskal algorithms); Shortest Path using Dijkstra's algorithm, K-clique problem, Graph Coloring problem.	CO1, CO2
6.	Flows in Network	Network flows - max flow and min-cost flow/circulation, Edmonds-Karp algorithm	CO3

7.	Tractable and Non- Tractable	One Way of Coping with NP-Hardness. Randomized	CO4,				
	Problems	Rounding. Vertex Cover and Travelling Salesman	CO5				
		Problem.					
8.	Mini-Project	Mini-Project	CO6				
Evaluation Criteria							
Components	s Maximum M	Marks					
Lab Test# 1	20						
Lab Test# 2	20						
D2D work	60						
	100						
Total	100						

Project based learning: Students in group of 3 to 4 students are required to develop mini-project based on the concepts taught in this course like Greedy algorithms, dynamic programming, network flow, etc. The solution approach for the identified problem statements should include the usages of advanced data structures including string data structures. The problem statements may be a puzzle-based games, graph-based problems, string-based problems, etc. The developed mini project will enhance the algorithmic thinking and problem-solving approaches of students which are highly desirable to excel in software industries.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein , Introduction to Algorithms, MIT Press, 3rd Edition, 2009
2. Hochbaum "Approximation Algorithms for NP-Hard Problems", 1996.
3. Ahuja, Magnanti and Orlin, "Network Flows: Theory, Algorithms and Applications", 1993.
4. Horowitz and Sahni, Fundamentals of Computer Algorithms, Computer Science Press, 1978
5. Study material on //fileserver2