Course Description

Course Cod	le 15B19CI791	Semester ODD Semester VII Session 2024 -2025				
		(specify Odd/Even) Month from July to Dec 2024				
Course Nan	ne Major Project P	art – 1 (CSE)				
Credits	4	Contact Hours				
Faculty (Names)	Coordinator(s)	Coordinator(s) Mr. Prashant Kaushik				
	Teacher(s) (Alphabeticall y)	Entire Department				
COURSE O	OUTCOMES				COGNIT	IVE LEVELS
C450.1	Summarize the contemporary literature&tools for hands-on in the respective project area		Understan	d Level (Level 2)		
C450 .2	Develop a working m	velop a working model for the identified problem Apply Level (Level 3)				
C450 .3		nalyze the specific requirements to develop the workable solution for e identified computing problem Analyze Level (Level 4)			evel (Level 4)	
C450 .4	Evaluate the develop	ed solution using tes	cases and	l performances	Evaluate I	Level (Level 5)
	·				<u> </u>	

Module No.	Title of the Module	List of Experiments	СО
1.			•••
2.			•••
•••			•••
n.			•••

Create Level (Level 6)

Create and report the results of the project in written formats

Evaluation CriteriaComponentsMaximum MarksMid Semester Viva20Final Viva30Project Report20Day to Day Work30Total100

C450.5

Project based learning: Each student in a group of 2-3 will have to develop a Major Project based on different real-world problems using any open-source programming language. Students have to study the state-of-the-art methods before finalizing the objectives. Project development will enhance the knowledge and employability of the students in IT sector.

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B19CI793	Semester Odd		Semester VI	II Session 2024 -2025 Month from July to Dec
Course Name	Summer Training &Viva NBA Code: C455				
Credits	edits Qualifying		Contact Hours		6-8 Weeks Industrial Training

Faculty (Names)	Coordinator(s)	Kirti Aggarwal, Ashish Kumar
	Teacher(s) (Alphabetically)	ALL FACULTY

COURSE OU	COURSE OUTCOMES		
C455.1	Summarize the contemporary activities with respect to their module, and explored tools for hands- on in the respective project area	Understand Level (Level 2)	
C455.2	Analyze industry requirements and work culture.	Analyze Level (Level 4)	
C455.3	Apply technical knowledge to construct computing-based solution with respect to the identified problem at industry/institute.	Apply(Level 3)	
C455.4	Interpret and critically evaluate the solution for the problem	Evaluate (Level 5)	
C455.5	Construct written discourse for presentation of work done at industry/institute	Create Level (Level 6)	

Evaluation Criteria: The Industrial Training of students will be evaluated on the basis of Viva and Report. They will be graded either as satisfactory or unsatisfactory.

Detailed Syllabus
Lecture-wise Breakup
NOTE: All the entries (...) must be in Times New Roman 11.

Course Code	15B1NHS731	Semester ODD (specify Odd/Even)		Semeste Month	er Session 2024-25 from July2024 to December2024
Course Name Disaster Management		t			
Credits	3		Contact Hours		3-0-0

Faculty (Names)	Coordinator(s)	Dr Nilu Choudhary
	Teacher(s) (Alphabetically)	Dr Nilu Choudhary

COURSE OU	COURSE OUTCOMES		
C4O1-2.1	Understand basic concept of disasters, and its types, disaster prevention and risk reduction	Understanding(C2)	
C4O1-2.2	Apply different approaches of Disaster Risk Reduction (DRR)	Applying (C3)	
C4O1-2.3	Analyze and enhance awareness of institutional processes in the country during disaster.	Analyzing (C4)	
C4O1-2.4	Evaluate strategies and develop skills to respond potential disaster with due sensitivity.	Evaluating (C5)	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Disasters	Concepts and definitions of Disaster(Hazard, Vulnerability, Resilience, Risks)	4
2.	Disasters: Classifications & Causes	Understanding Natural and manmade disasters. Social ,Economic, Political, Environmental, Health, Psychological.	4
3.	Impact of Disaster on Caste, Class and Gender	Caste and disaster, Disaster discrimination, in terms of caste, class, gender, age location, disability, Role of Women's in Disaster	5
4.	Approaches to Disaster Risk reduction	Disaster cycle - its analysis, Phases, Culture of safety, prevention, mitigation and preparedness, community based DRR, Structural - nonstructural measures roles and responsibilities of community.	5
5.	Disaster Management Act(2005)	DM Act and Policy, plans, Programmes and Legislation.	3
6.	Inter-relationship between Disasters and Development	Factors affecting Vulnerabilities, differential impacts, impact of development of projects such as dams, embankments, changes in land-use and relevance of	5

		indigenous knowledge, appropriate technology and local	
		resources.	
7.	Disaster Risk	Hazard and Vulnerability profile of India, Components of	5
	Management in India	Disaster Relief: Water, Food, Sanitation, Shelter, and Health	
8	Risk Society	Risk Society in 1992, Ulrick Beck, Processes of	3
		Modernization, The new paradigm of risk society	
9	Global trends in	Urban disasters, Pandemics(COVID2019), Epidemics,	4
İ	disasters	complex emergencies, Climate change, Agenda21:For Local	
l <u> </u>		actions,	
10	Disaster,	Environment Management, Waste Management, Types of	4
i	Environment and	Disaster Waste, Sources of Waste	
	Development		
		Total number of Lectures	42
Evaluat	ion Criteria		
Components		Maximum Marks	
T1		20	
T2		20	
End Semester Examination		35	
TA		25(Project, Quiz, Class Participation)	
Total		100	

Project Based Learning: Students in group of 5-6 will be given project to understand the menace of disaster through waste deposition in our environment. To make this subject application-based, student develop cost effective and environmentally sound techniques and strategies for solid waste management. By installing high tech driven composters students can analyze and evaluate the implications of waste in our environment through this live project. Converting solid waste in organic manure, produced in college mess -canteen, later on that organic manure and liquid manure can be used for gardens and parks in college premises.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Government of India, 2009. National Disaster Management Policy.			
2.	Gupta Anil K, Sreeja S. Nair. 2011 Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi			
3.	Indian Journal of Social Work 2002. Special Issue on Psychosocial Aspects of Disasters, Volume 63, Issue 2, April			
4.	Alexander David, Introduction in "Confronting Catastrophe", Oxford University Press, 2000			
5	Coppola P Damon, 2007. Introduction to International Disaster Management			
6	Yojana :A DEVELOPMENT MONTHLY Magazine, Volume 61, January 2017			
7	S.K. Misra& V. K. Puri, Indian Economy, Himalaya Publishing House, 2011.			
8	Parasuraman, S. & P.V. Unnikrishnan, 2005, "Disaster Response in India: An Overview," India Disasters Report, Punjablok.			

9	Satapathy S. (2009) Psychosocial care in Disaster management, A training of trainers manual (ToT), NIDM publication.
10	Blaikie, P, Cannon T, Davis I, Wisner B 1997. At Risk Natural Hazards, Peoples' Vulnerability and Disasters, Routledge.
11	Dave, R.K. (2018), Disaster Management in India: Challenges and Strategies
12	Disaster Management and Rehabilitation, Rajdeep Dasgupta, 2007
13	Jensen, John R., 2007, Remote Sensing of the Environment: An Earth Resource Perspective, 2nd Ed., Up Saddle River, NJ: Prentice Hall
14	NDMA, 2010, National Disaster Management Guidelines , Role of NGOs in Disaster Management

Revised CO-PO and CO-PSO Mapping

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
C401-2.1						2	3	2		2		3		
C401-2.2						3	3	3	3			3		
C401-2.3						3	3	3	3	1		3		
C401-2.4						3	3	3	2	2		3		
Avg.						3	3	3	3	3		3		

Detailed Syllabus

Lecture-wise breakup

Course Code	16B1NCI648	Semester - Od	ld	Semeste	er VII Session 2024 -2025		
		(specify Odd/	Even)	Month 1	onth from: July 24- Dec 24		
Course Name	Information Retrieva	mation Retrieval and Semantic Web					
Credits	3		Contact I	Hours	3 – 0 0		

Faculty (Names)	Coordinator(s)	Prof. Neetu Sardana (Sector-62), Dr. Mukta Goyal (Sector-128)
	Teacher(s) (Alphabetically)	Dr. Mukta Goyal, Prof. Neetu Sardana

COURSE C	OUTCOMES	COGNITIVE LEVELS
C430.11.1	Understand standard Information retrieval models, indexing mechanism, Web technologies used for designing an intelligent web.	Level-2 (Understanding)
C430-11.2	Apply query processing techniques for content extraction in varied Information retrieval systems.	Level-3 (Applying)
C430-11.3	Analyze the searching algorithms for Information Retrieval.	Level-4 (Analysis)
C430-11.4	Evaluate the IR system results using different metrics for knowledge base modeling and parameter estimation.	Level-5 (Evaluating)
C430-11.5	Design intelligent application for solving real world information retrieval problems	Level-6 (Creating)

Module No.	Title of the Module	P				
1.	Information					
2.	Boolean Retrieval & Index Construction	& Index Boolean queries, the extended Boolean model versus ranked				
3.	Dictionary and tolerant retrieval Wild card queries, Spelling correction, Phonetic correction					
4.	Scoring Term weighting and the vector space model	Term frequency and weighting, Vector space model, Variant TF-IDF Scoring, Probabilistic IR, Language Modeling, Distributed word representations (Word Co- occurrence, Word Embedding (GLOVE, Word2Vec)), Evaluation of IR System.	6			
5.	Link analysis	Web as graph and Page ranking algorithms	4			
6.	Information retrieval tools	Web directory, Search engine, Meta search engines, Web searching and search engine architecture, Searching Algorithms (Fish, Shark etc).	4			
7.	Web Crawling	5				
8.	Taxonomy and Ontology	Creating domain specific ontology, Ontology life cycle Semantic Web: Resource description Framework (RDF),	10			

	Turtle format, Storing RDF in Databases/files, Language Tags and labels in RDF files, RDF schema and web ontology language (OWL), SPARQL Query Language.	
	Total number of Lectures	42
Evaluation Criteria		
Components	Maximum Marks	
T1	20	
T2	20	
End Semester Examination	35	
TA	25 (Attendance = 5, Assignment/ Quiz= 10, Mini	
	Project= 10)	
Total	100	

The students in the group of 3-4 will read research papers in which information retrieval methods such as Index construction, Query Processing, tolerant retrieval, vector space modeling, probabilistic information retrieval, Link Analysis etc are utilized to solve research related problems. The students will implement the research papers using a standard dataset taken from the platforms like Kaggle, Github, UCI, KDD etc. Applying the methods on standard dataset will enable the students in enhancing their understanding and skills towards Information retrieval.

Recommended Reading material:

Text Books

- 1. Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, "An Introduction to Information Retrieval", Cambridge University Press (CUP), 2008.
- 2. A Semantic Web Primer, by Grigoris Antoniou, Paul Groth, Frank van Harmelen and Rinke Hoekstra, Publisher: MIT Press; 3rd edition, 2012.

Reference Books

- 1. Salton, G. and McGill, M.J., "Introduction to Modern Information Retrieval", Computer Series. McGraw-Hill, New York, NY, 1983.
- 2. Ricardo Baeza-Yates and Berthier Ribeiro-Neto, —Modern Information Retrieval: The Concepts and Technology behind Search, Second Edition, ACM Press Books, 2011
- 3. Stefan Buettcher, Charles L. A. Clarke and Gordon V. Cormack, —Information Retrieval: Implementing and Evaluating Search Engines, The MIT Press, 2010.
- 4. Rijsbergen C. J. 2012," Information Retrieval", 2nd edition.
- 5. Learning SPARQL: Querying and Updating with SPARQL 1.1, by Bob DuCharme Publisher: O'Reilly Media; 2 edition, July 18, 2013.

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	17B1NBT732	Semester Odd (specify Odd/F	Semeste Month			2024-2025	
Course Name	Healthcare Marketpla	ace					
Credits	3		Contact I	Hours		3	_
					•		

Faculty (Names)	Coordinator(s)	Prof Indira P Sarethy
	Teacher(s) (Alphabetically)	Prof. Indira P. Sarethy, Prof. Shweta Dang

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Healthcare markets	About the various Regulatory bodies for approval of new medical innovations 2 [CO1] Level 2 Understanding	02
2.	Clinical Pharmacokinetics and Clinical trials for new Drugs	Biologic sampling techniques, analytical methods for the measurement of drugs and metabolites, and procedures that facilitate data collection and manipulation. Clinical Trials: PhI, II, III and IV [CO2] Level 3 Applying	05
3.	Regulatory approval pathways	Preclinical studies US and EU filings IND submissions, NDA and BLA Submissions, Non-patent exclusivities, data and market exclusivities cost analysis [CO2] Level 3 Applying	06
4.	Patents of drugs and devices, Entry for generics in health care markets	Role of patents on new drugs and devices, Ever-greening of patents, Product and Process patents. Hatch Waxman act and Introduction of generics and resulting cost reduction, Orange book (FDA) and related case studies. [CO2] Level 3 Applying	08
5.	Economics of healthcare		7
6.	Medical technology and insurance	For medical devices, pharmaceuticals, genetic diagnostic tests and their regulations [CO3] Level 4 Analyzing	4
7.	Indian hospital sector	Various players – government, private, PPP models, strategic perspectives, case studies [CO3] Level 4 Analyzing	4
8	Innovations in the marketplace	Health to market innovations [CO3] Level 4 Analyzing	4
9	Healthcare informatics	e-health, collection of health data, data processing, evaluation, health information systems, case studies [CO3] Level 4 Analyzing	2

Project Based Learning: Students analyze the site https://pmjay.gov.in/about/pmjay, understand the following sections:

- Coverage under PM-JAY
- Implementation Model
- Financing of the Scheme

And represent them in one comprehensive diagram, integrating all the above components. This helps them in understanding recent innovations in healthcare market and integration of healthcare informatics.

Evaluation Criteria

Components Maximum Marks

T1 20 T2 20 End Semester Examination 35

TA 25 (PBL, Assignments 1, 2, 3, Attendance)

Total 100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- 1. https://www.who.int/nationalpolicies/processes/stakeholders/en/
- Conflict of interests. I. Lo, Bernard. II. Field, Marilyn J. (Marilyn Jane) III. Institute of Medicine (U.S.).

 Committee on Conflict of Interest in Medical Research, Education, and Practice. IV. National Academies Press (U.S.), 2009
- **3.** Research papers and online resources

CO-PO and CO-PSO Mapping:

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
C401-14.1	2	1	1			2		2		2		2		
C401-14.2	2	1	1			2		2		1		1		
C401-14.3	2	1	2	2	1	2		2	1	1		1		
C401-14.4	2	2	1			2				1		2		
Avg. C401-14	2	1	1	2	1	2		2	1	1		2		

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	17B1NBT733	Semester Odd/I			er VII Session 2024 -2025 From July-December		
Course Name	Stress: Biology, Beha	Stress: Biology, Behaviour and Management					
Credits	3 (3-0-0	3 (3-0-0)			3		

Faculty (Names)	Coordinator(s)	Vibha Gupta
	Teacher(s) (Alphabetically)	Vibha Gupta

After the co	COGNITIVE LEVELS		
C401-16.1 Explain the biological and cognitive basis of stress. Understand Level (
C401-16.2	Identify social and environmental stressors	Apply level (C3)	
C401-16.3 Develop coping skills through stress management strategies Apply level (C3)			
C401-16.4	Analyze stress situations and solutions for improving quality of life	Analyze level (C4)	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	The concept of Stress - Major stressors vs. routine hassles; Major types of Stressors - Occupational Stressors; Organization Stress; Environmental Stressors; Happy Interactive Class (HIC)	3
2.	Scientific Foundations of Stress	HIC 1, The Nature of Stress; Human Physiology; Stress and Relaxation Responses; Stress and Disease	5
3.	Body Systems activated by stressors	HIC2, Nervous System, Endocrine System, immune system, Cardiovascular system, Gastrointestinal System, Muscles	9
4.	Cognitive Psychology	HIC3, Theoretical models: psychodynamic, behavioral, and cognitive; Thoughts, Beliefs and Emotions: Behavioral Patterns; Self-concept and Self-esteem; Stress emotions - Anger and Fear; Personality Traits – Stress prone and Stress resistant	11
5.	Social Psychology	HIC4, Family and Culture; Demands and Responsibilities; Relationships; Verbal and Non-verbal Communication; Human Spirituality	3
6.	Stress and the Human Environmental Interactions	HIC4, Time; Body Rhythms; Weather and Climate; Nutrition; Exercise; Drugs and Addictions; Violence and Post Traumatic Stress	3

7. Happy Interactive Class (HIC) related to Stress management techniques and therapeutic strategies		HIC1 - DIY Strategies- Exercise and Health; HIC2 - Journal Writing/Music and Art Therapy; HIC3- Humor and Comic Relief; HIC4- Meditation/Mindfulness/Belly Breathing/Visual Imagery/Progressive Muscle Relaxation Psychological interventions; Developing Cognitive Coping Skills; Creative Problem Solving (case studies);	HICs to be delivered in the modules 1-6		
8. The adaptive brain		Neuroplasticity – positive adaptation to stress	2		
		Total number of Lectures	40		
Evaluation Criteria					
Compone	ents	Maximum Marks			
T1		20			
T2		20			
End Semester Examination		35			
TA		25 (Project, Quiz and class discussions)			
Total		100			

Project based learning:

To identify factors responsible for stress and steer 2 people on a joyful path by becoming their "Happiness Coach"

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	George Fink "Stress: Concepts, Cognition, Emotion, and Behavior: Handbook in Stress Series; Volume 1; Academic Press; 2016				
2.	Jeanne Ricks "The Biology of Beating Stress" Kindle Edition; 2014				
3.	Jerrold S. Greenberg "Comprehensive Stress Management" Tata McGraw-Hill Edition; Tenth Ed., 2009				
4.	Brian Luke Seaward "Managing Stress: Principles and Strategies for Health and Well-Being" Sixth Ed., Jones and Bartlett Publishers, 2009				
5.	Saundra E. Ciccarelli, and Glenn E. Meyer "Psychology" South Asian Edition; Published by Pearson Education (2008); ISBN 10:8131713873 / ISBN 13: 9788131713877				

CO-PO and CO-PSO Mapping

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C401-16.1						1						1
C401-16.2	1			1		1			1			1
C401-16.3	1			1		1		1	2	1	1	2
C401-16.4		1	1	2		1		1	2	1	1	2
C401-16	1.00	1.00	1.00	1.33		1.00		1.00	1.66	1.00	1.00	1.50

PSO1	PSO2

Detailed Syllabus Lecture-wise Breakup

Course Code	17B1NCI731	Semester ODD		SemesterVII Session 2024 -2025		
		(specify Odd/Even) Month for		Month fr	om July 2024 to Dec 2024	
Course Name	Machine Learning and Natural Language Processing					
Credits	3		Contact H	Iours	3-0-0	

Faculty (Names)	Coordinator(s)	Dr. Parul Agarwal (J-62), Dr.Arti Jain (J-128)
	Teacher(s) (Alphabetically)	Dr. Arti Jain, Dr. Parul Agarwal

COURSE C	OUTCOMES	COGNITIVE LEVELS			
C430-2.1	Understand different syntax, semantics, mathematical concepts, and language models in NLP.	Understand Level [Level 2]			
C430-2.2	Apply different models for POS tagging and probabilistic parsing Apply Level [Level 3] techniques in NLP				
C430-2.3	Apply different approaches for Topic modeling.	Apply Level [Level 3]			
C430-2.4	Analyze different supervised and unsupervised techniques for text classification.	Analyze Level [Level 4]			
C430-2.5	Choose appropriate NLP concepts and machine learning techniques for NLP to solve the real world problems.	Evaluate Level [Level 5]			

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction and Basic of Text Processing	Introduction to Machine Learning & NLP, Challenges, Tokenization, Lemmatization, Data Representation	4
2.	Basics of Mathematics for language Model	Linear Algebra, ProbabilityTheory, N Gram Model	4
3.	Parts of Speech Tagging	Various Models: Hidden Markov Model, SVM, CRF, RNN, LSTM	10
4.	Parsing	Linguistic Essentials, Markov Models, Applications of Tagging, Probabilistic Parsing - CFG, CSG, PCFG	8
5.	Text Classification	Supervised: Bayesian, Naive Bayes, Sentiment Analysis, Text Classification, Unsupervised: K-means, Expectation- Maximization (EM) Algorithm, MaxEnt Classifier	6
6.	Topic Modelling	Topic Modelling: Latent Dirichlet Allocation (LDA) and its Variants	3

Evaluation Component		Maximum Marks	
		Total number of Lectures	42
		Generative AI, Large Language Models	
		Code Categorization, QuestionAnswering (Eliza),	
		Translation, Spell Correction, News Article Title Generation,	
		Resolution, Parsing, Information Extraction, Machine	
		Chunking, Named Entity Recognition, Co- reference	
7.	Applications	Document Summarization, Co-referencing, Noun Phrase	7

T1 20 T2 20 End Semester Examination 35

TA 25 (Attendance, Assignment/Quiz, PBL)

Total 100

Project based learning: Each student in a group of 2-3 would apply Machine Learning and Natural Language Processing models to solve day-to-day problems. To make subject application based, studentswould apply ML & NLP technologies to the task of document summarization, information extraction, question answering, spell correction and many more. Applicability of part-of-speech tagging, parsing, document classification and topic modelling enhance the students'knowledge and help their employability into real-time application domains.

	to knowledge and neith employaethey into real time application domains.						
	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)						
Recor	mmended Textbooks: Author(s), Title, Edition, Publisher, Year of Publication etc.						
1.	Hapke, Hannes, et al. Natural Language Processing in Action: Understanding, Analyzing, and Generating Text with Python. United States, Manning, 2019.						
Recon	mmended Reference Books: Author(s), Title, Edition, Publisher, Year of Publication etc.						
1.	Pramod Singh, Machine Learning with PySpark: With Natural Language Processing and Recommender Systems, First Edition, Apress, 2018.						
2.	Rao, Delip, and McMahan, Brian. Natural Language Processing with PyTorch: Build Intelligent Language Applications Using Deep Learning. China, O'Reilly Media, 2019.						
3.	Géron, Aurélien. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. United States, O'Reilly Media, 2019.						
4.	Eisenstein, Jacob. Introduction to Natural Language Processing. United States, MIT Press, 2019.						
5.	Vajjala, Sowmya, et al. Practical Natural Language Processing: A Comprehensive Guide to Building Real World NLP Systems. Taiwan, O'Reilly Media, 2020.						
6.	Raschka, Sebastian, and Mirjalili, Vahid. Python Machine Learning. United Kingdom, Packt Publishing, 2017.						
7.	Kochmar, Ekaterina. Getting Started with Natural Language Processing. United States, Manning, 2022.						
8.	Zhang, Yue, and Teng, Zhiyang. Natural Language Processing: A Machine Learning Perspective. India, Cambridge University Press, 2021.						

Detailed Syllabus

Lecture-wise Breakup

Subject Code	17M11CS111	Semester (specify Odd/Even)	Semester Odd Session 2024-2025 Month from July 24 to December 24
Subject Name	Data Structure & Algorithms for Big Data		
Credits	3	Contact Hours	3(L)

Faculty (Names)	Coordinator(s)	Shikha Jain
	Teacher(s) (Alphabetically)	Shikha Jain

COURSE OU	JTCOMES	COGNITIVE LEVELS
C110.1	Understand the importance of data structure and algorithm for Big Data	Understand Level (Level 2)
C110.2	Apply appropriate data structure for the big data problems.	Apply Level (Level 3)
C110.3	Analyze various algorithms required to solve problems from the domain of big data.	Analyze Level (Level 4)
C110.4	Design and evaluate an efficient solution to a given real world problem using Big data based data structures and algorithms	Create Level (Level 6)

S.N.	Subtitle of the Module	Topics in the module	No. of Lectures for the module	Remarks
1.	Introduction to Big Data	Big Data and its characteristics, Type of data, Motivation, Applications of Big Data, Domains for Big Data, Various tools and services	2	
2.	Basic Data Structures Concepts	Array: searching, sorting; Trees: Binary Tree, AVL, B-tree; Graph: BFS, Spanning Tree	3	
3.	Parallel Basic Algorithms	Brent's Theorem, Sum of n numbers, Prefix scan, Pointer Jumping, Rank of list, Pointer to root, Suffix sum, Preorder traversal of binary tree.	4	
4.	Parallel advance Algorithms	Parallel Sorting (Merge Sort, Quick Sort, Odd even transposition sort), Parallel shortest Path Algorithm, Parallel Matrix Algorithms	5	

5.	Indexing strategies Trees	R and R+ Trees, Prefix Trees, LSM trees	5	
6.	Big Data Databases	MongoDB, Accumulo, BigTable	5	
7.	Map Reduce	MapReduce, Mapreduce Job scheduling	4	
8.	Hash and membership	Hashing, Approximate Membership, Bloom Filter, Counting Bloom Filter	5	
9.	Cardinality and Frequency	LogLog, HyperLogLog, Count Sketch, Count–2 min sketch	5	
10.	Big Data Framework	Hadoop HDFS, Read and write operation, Fault Tolerance-Failures and Recovery	4	
Total nur	nber of Lectures	42		

Evaluation Criteria

Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
TA	25Attendance (10 Marks), Assignment/Quiz/Mini-project (15 Marks)
Total	100

Project based learning: Students in group of 3 to 4 students are required to develop mini-project based on the concepts taught in this course. In mini-project, students need to create the distributed environment either using Hadoop framework/Multithreading using OpenMP/ Matlab. Problem statements need to be formulated in various applications domains of big data, proposing the solution approach and implemented over the created distributed environment.

Text Bo	oks
1.	Algorithms and Data Structures for Massive Datasets by Dzejla Medjedovic, Emin Tahirovic, and Ines Dedovic, MEAP began July 2020
2.	Data Algorithms: Recipes for Scaling Up with Hadoop and Spark by Mahmoud Parsian, O'Reilly Media, 2015
Reference	e Books
1.	Probabilistic Data Structures and Algorithms in Big Data Applications by Andrii Gakhov, 2022
2.	Sequential and Parallel Algorithms and Data Structures by Roman Dementiev, Martin Dietzfelbinger, Peter Sanders, Kurt Mehlhorn, 2019
3.	Big Data with Hadoop MapReduce A Classroom Approach By Rathinaraja Jeyaraj, Ganeshkumar Pugalendhi, Anand Paul, 2021

COs	PO1	PO2	PO3	PSO 1	PSO2
C110.1	Students will understand the existing algorithms to solve various open problems in the domain.		Towards the end of the semester, students will submit a miniproject taken from the domain of Big		
C110.2	2 Students will design algorithms to solve various open problems in the domain.	1 Students will submit a mini project report	Data 2 Towards the end of the semester, students will submit a miniproject taken from the domain of Big Data	2 Various real-world problems in the domain will be discussed and given in assignments/exam	
C110.3	2 Students will design algorithms to solve various open problems in the domain.	1 Students will submit a mini project report	Towards the end of the semester, students will submit a mini- project taken from the domain of Big Data	2 Various real-world problems in the domain will be discussed and given in assignments/exam	
C110.4	2 Students will design algorithms to solve various open problems in the domain.	Students will submit a mini project report	Towards the end of the semester, students will submit a miniproject taken from the domain of Big Data	2 Various real-world problems in the domain will be discussed and given in assignments/exam	Students will work on mini project to provide ethical solution to the real world problem
Avg.	2	1	2	2	1

Detailed Syllabus Lecture-wise Breakup

Subject Code	17M11CS112	Semester (specify Odd/ Even): Odd	Semester: Odd Session 2024-2025 Month from July to December
Subject Name	Machine Learning and Data Mining		
Credits	3	Contact Hours	3

Faculty	Coordinator(s)	Anita Sahoo
(Names)	Teacher(s)	Anita Sahoo

COURSI	OUTCOMES	COGNITIVE LEVELS
C112.1	Explain different techniques used in machine learning and data mining.	Level-2- (Understanding)
C112.2	Identify and apply a suitable technique to solve the given problem in the domain of data mining and machine learning.	Level-3 (Apply)
C112.3	Derive implications by applying pre-processing techniques on datasets for machine learning problems.	Level-4 (Analyze)
C112.4	Solve to provide the complete solution to a given knowledge discovery/prediction problem and evaluate its performance using suitable metric(s).	Level-5 (Evaluate)

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1	Introduction	Introduction to Machine Learning, Data Mining and Knowledge Discovery in Databases, Data Types, EDA	4
2	Classification	Introduction to classification, k-Nearest Neighbours, Naïve Bayes, Decision Trees, Support Vector Machine, Back- propagation Neural Network	8
3	Regression	Linear Regression with One Variable, Linear Regression with Multiple Variables, Logistic Regression	4
4.	Clustering	Introduction, Different type of Clustering Methods, Partitioning Clustering Methods, Hierarchical Clustering Methods, k-means, k-medoids, density based clustering, Self-Organizing Map, cluster validation	6
5.	Association Rules	Support, Confidence, Lift, Conviction; Apriori algorithm, Eclat algorithm, FP-growth algorithm	5
6.	Dimensionality Reduction	Introduction, Subset Selection, PCA, SVD, Factor Analysis, Multidimensional Scaling, Linear Discriminant Analysis	4
7.	Ensemble Methods	Ensemble methods of classification-Bagging, Boosting, and Random Forest	4
8.	Quantum Machine Learning	Fundamentals of quantum computing, quantum states, quantum gates, interference, superposition, entanglement, measurements, variational quantum circuit using Qiskit	7
		Total number of Lectures	42

Evaluation Criteria	
Components	Maximum
Marks T1	20
T2	20
End Semester Examination	35
TA	25 (Attendance (10), Mini-project/Assignment (15))
Total	100

Project based learning: Each student in a group of 3-4 will have to develop a mini project based on association mining, classification and clustering approaches. The students can choose any real-world application that requires some decision-making. The students have to implement the mini-project using any open-source programming language. Project development will enhance the knowledge and employability of the students in IT sector.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc.)

Refe	rence Books, Journals, Reports, Websites etc.)
1	Han, Jiawei, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques. Elsevier, 3rd edition ,2012
2	Kimball R. and Ross M ,The Data Warehouse Toolkit", Wiley, 3rd edition,2013
3	Pujari, Arun K, Data mining techniques, Universities press, 3rd edition, 2013
4	Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining, second edition, 2019
5	Soumen Chakrabarti, Mining the Web: Discovering knowledge from hypertext data", Morgan Kaufmann, Elsevier
6	Mitchell, Tom, and Machine Learning McGraw-Hill. "Edition." (1997).
7	Wittek, Peter. Quantum machine learning: what quantum computing means to data mining. Academic Press, 2014.
8	Anahory S. and Murray D, Data Warehousing in the Real World, Addison- Wesley
9	Dunham, Margaret H. Data mining: Introductory and advanced topics. Pearson Education India, 2006.
10	Mattison R. ,Web Warehousing and Knowledge Management", Tata McGraw-Hill.
11	David Hand, Heikki Mannila and Padhraic Smyth ,Principles of Data Mining,PHI
12	Transactions on Database Systems (ACM)
13	IEEE Transactions on Knowledge & Data Engineering
14	The VLDB Journal The International Journal on Very Large Data Bases

<u>Detailed Syllabus</u> Lecture-wise Breakup

	nectare was promise					
Course Code	18B12HS412	Semester Odd				Session 2024-2025 lly 2024 - December 2024
Course Name	HUMAN RESOURCE ANALYTICS					
Credits	3		Contact	Hours		3-0-0

Faculty (Names)	Coordinator(s)	Dr Kanupriya Misra Bakhru
	Teacher(s) (Alphabetically)	Dr Kanupriya Misra Bakhru Email id: kanupriya.misra@jiit.ac.in

COURSE OUTCO	COGNITIVE LEVELS	
C401-20.1	Understand different analytical techniques used for	Understanding Level
C401-20.1	solving HR related problems.	(C 2)
C401-20.2	Apply descriptive and predictive analysis techniques to	Applying Level
C401-20.2	understand trends and indicators in human resource data.	(C 3)
C401-20.3	Analyze key issues related to human resource	Analyzing Level
C401-20.5	management using analytical techniques.	(C 4)
C401 20 4	Critically assess and evaluate the outputs obtained from	Evaluating Level
C401-20.4	analytical tools and recommend HR related decisions.	(C 5)
C401 20 F	Create hypotheses, propose solutions and validate using	Creating Level
C401-20.5	appropriate analytical techniques	(C6)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Human Resource (HR) Analytics	Understanding the need for mastering and utilizing HR analytic techniques, Human capital data storage and 'big (HR) data' manipulation, Predictors, prediction and predictive modeling, Current state of HR analytic professional and academic training, HR's Contribution to Business Value, the Changing Nature of HR.	8
2.	Human Resource information systems and data	Understanding HR metrics and data, Data collection, tracking, entry, Data availability in the entire Employment Lifecycle, Approaches and costs of collecting HR related data, Analysis software options, Using SPSS, Preparing the data.	8
3.	Analysis Strategies	From descriptive reports to predictive analytics, Statistical significance, Data integrity, Types of data, Categorical variable types, Continuous variable types, Using group/team-level or individual-level data, Dependent variables and independent variables, Introduction of tools for HR data analysis: Correlation, Regression, Factor Analysis, Cluster Analysis, Structural equation modeling.	10

		Total number of Lectures	42
5.	Future of Human Resource Analytics	Rise of Employee Behavioral Data, Automated Big Data Analytics, Big Data Empowering Employee Development, Quantification of HR, Artificial Intelligence in HR.	6
4.	Application of Human Resource Analytics	Workforce Planning Analytics, Diversity Analytics, Talent Sourcing Analytics, Talent Acquisition Analytics, Talent Engagement Analytics, Training and Intervention Analytics, Analytical Performance Management, Retention Analytics. Data Visualization and Storytelling using Tableau.	10

Evaluation Criteria

Components Maximum Marks

T1 20 T2 20 End Semester Examination 35

TA 25 (Project, Quiz)

Total 100

Project Based Learning:

Students, in groups of 5-6, are required to select a contemporary topic of HR. Further students are required to select a sector from where they will collect the data. Data should be collected from at least 50 respondents from the chosen sector. The information can be collected with the help of an interview or some kind of questionnaire pertaining to the HR topic chosen. Analysis of the collected data should be done using SPSS software. Findings should be discussed and recommendations should be suggested.

	rence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Edwards and Edwards, Predictive HR Analytics. Mastering the HR Metric, Kogan Page, Limited, 2019
2.	Banerjee, Pandey and Gupta, Practical Applications of HR Analytics, Sage, 2019
3.	Bhattacharyya, HR Analytics: Understanding Theories and Applications, Sage, 2017
4.	Isson, Harriott and Jac Fitz-enz, People Analytics in the Era of Big Data: Changing the Way You Attract, Acquire, Develop, and Retain Talent, Wiley, 2016
5.	Guenole, Ferrar and Feinzig, The Power of People: How Successful Organizations Use Workforce Analytics To Improve Business Performance, First Edition, Pearson, 2017
6.	Sesil, Applying Advanced Analytics to HR Management Decisions: Methods for Selection, Developing, Incentive and Improving Collaboration, Pearson, 2014

Course Code	19B12CS423	Semester ODD		Semeste	r: VII Session 2024 -2025
		(specify Odd/Even)		Month f	From July 2024-Dec 2024
Course Name	Computing for Data Science				
Credits	3-0-0		Contact I	lours	3

Faculty (Names)	Coordinator(s)	Dr. Ankita Verma, Anuradha Surolia
	Teacher(s) (Alphabetically)	Dr. Ankita Verma, Anuradha Surolia

COURSE	OUTCOMES	COGNITIVE LEVELS
C431-7.1	Understand the basic concepts, methods, and mathematics relevant to computational techniques for data science.	Understand (Level 3)
C431-7.2	Apply descriptive and inferential statistics for data analysis.	Apply (Level 3)
C431-7.3	Develop and apply advanced and associated computing techniques and technologies for data analysis.	Apply (Level 3)
C431-7.4	Compare the performance of multiple methods and models, recognize the connections between how the data were collected and the scope of conclusions from the resulting analysis, and articulate the limitations of formal inference and modeling.	Analyze (Level 4)
C431-7.5	Evaluate strategies for constructing models and can use different measures of model fit and performance to assess models.	Evaluate (Level 5)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Data Science	Characteristics & Evolution of data, Data Science Process, Types & Levels of data, Datafication, Steps of Data Science, Central Tendency, Measure of Dispersion, Data Munging, Feature Engineering	7
2.	Statistical Methods in Data Science Sampling of data, Correlation Analysis	Data Distribution (Bernoulli, Uniform, Binomial, Normal, Poisson, Exponential), Mathematical Statistics, Inferential Statistics, Descriptive Statistics, Random Variable, Probabilistic Statistics,	7
3.	Computing techniques for Data Science	Regression, Mapping Problem to Machine Learning Task, Memorization Method, Generalized Additive Models, Time-Series Model, Predictive Modeling, Fuzzy C Means Clustering, Ensemble Techniques, Outlier Detection.	10
4.	Technologies & Tools in Database Analytics	SQL Essentials for data science, String Pattern, Ranges, Sorting & Grouping Result Set, working with multiple tables, accessing database using R/Python, Database Text Analysis, User defined Functions & Aggregates, MADlib, Tools & Techniques for unstructured data.	5

5.	Statistical Methods for Evaluation	Hypothesis Testing, Difference of Means, Significance Level and P-Value, Test Statistics (Z-test, ANOVA, T-Test, Redundancy Test), Bias Variance Trade off, Cross Validation	6
6.		Visualization before analysis, Dirty Data, Visualizing single and multiple variables, summary statistics of EDA, Data Exploration versus Presentation, Real time case study, Tools & Techniques	5
7.	Data Science & Ethical Issues	Privacy, Security & Ethics, Next generation Data Scientist	2
		Total number of Lectures	42

Project based learning: Each student in a group of 4-5 will choose an industrial application for development. The objective of the course is to gain the knowledge about the data science. To fulfill the objective of this course student needs to learn and apply the data science concept by using Python programming languages on computer science problem. Students need to consider trending research problems and should apply statistical analysis and machine learning solutions on them. Understanding the core concept and statistical knowledge helps the students in enhancing their expertise.

Evaluation Criteria

Components	Maximum Marks		
T1	20		
TO.	20		

T2 20 End Semester Examination 35

TA (Tutorials, regularity & Assignments) 25 (Assignments & Attendance)

(Attendance= 10

Internal assessment=5 & Assignment in PBL mode = 10)

Total 100

Reco	Recommended Reading material:				
Text	Text Books				
1.	Haider, M. (2015). Getting Started with Data Science: Making Sense of Data with Analytics. IBM Press.				
2.	Dietrich, D. (Ed.). (2015). Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data. Wiley.				
3.	Trevor, H., Robert, T., & JH, F. (2009). The Elements of Statistical Learning: Data Mining, Inference, And Prediction.				
4.	Jiawei, Han, and Kamber Micheline. <i>Data mining: concepts and techniques</i> . Morgan kaufmann, 2006. (3 rd edition)				
Refe	erence Books				
4.	Grus, J. (2015). Data Science from Scratch: First Principles with Python. O'Reilly Media, Inc.				
5.	Taylor, J. K., & Cihon, C. (2004). Statistical Techniques for Data Analysis. Chapman and Hall/CRC.				
6.	Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press.				
7.	Zumel, N., & Mount, J. (2014). Practical Data Science with R. Manning Publications Co				
8.	Saltz, J. S., & Stanton, J. M. (2017). An Introduction to Data Science. SAGE Publications.				

Course Description

Subject Code	19B12CS427	Semester ODD 2024	Semester VII Session 2024–25 Month from July '24 to Dec '24
Subject Name	Subject Name Introduction to DevOps		
Credits	3 Contact Hours		3L

Faculty (Names)	Coordinator(s)	Dr. Amarjeet Prajapati(J62), Dr.Pulkit Mehndiratta(J128)
	Teacher(s)	 Dr. Amarjeet Prajapati Dr. Pulkit Mehndiratta
Sections	1	

COURSE OU	COGNITIVE LEVELS	
C431-8.1	To understand the needs of Continuous integration, continuous delivery, continuous deployment and continuous monitoring.	Understand Level (Level 2)
C431-8.2	To apply pull and push requests using GIT and GIT Hub and also able to review the changes on GitHub	Apply Level (Level 3)
C431-8.3	To analyse scripts for the creating pipeline and deploying the micro services for the Developed Application for the calculated load and response times.	Analyse Level (Level 4)
C431-8.4	To evaluate and write scripts for the measuring and loading the reports in KAFKA and Tableau for management view.	Evaluate Level (Level 5)

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Introduction	Why DevOps? What is DevOps? DevOps Market Trends DevOps Engineer Skills DevOps Delivery Pipeline DevOps Ecosystem	8
2.	Git,CI, CD, CDep, CM	Creating and merging different Git Branches Git workflows Git cheat sheet What is Continuous Integration? What is Continuous Delivery? What is Continuous Deployment? What is Continuous Monitoring?	8

3.	Jenkins	Introduction to Jenkins (With Architecture) Jenkins Management Adding a slave node to Jenkins Building Delivery Pipeline Pipeline as a Code Implementation of Jenkins in the Projects	8
4.	Chef and Ansible	Introduction to Chef &Ansible Chef Installation and Uses Ansible Installation Configuring Ansible Roles	8
5. Containerization		Revisiting Kubernetes Cluster Architecture Spinning up a Kubernetes Cluster on Ubuntu VMs Exploring your Cluster Understanding YAML Creating a Deployment in Kubernetes using YAML	10
	•	Total number of Lectures	42
Evaluation Crit	teria		
Components T1 T2 End Semester 1 TA	20 20 Examination 35	num Marks s), Assignment/Quiz/Mini-project (20 Marks) 100	

Project based learning: Student shall be a part of a group of 5-6 students and will be require to create software projects using DevOps principles. The students are supposed to use advance tools like Chef, Ansible and Jenkins to implement automatic building and pipelining. Understanding how these building works them will enable their employability in software engineering sector.

Reco	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books,			
Refe	Reference Books			
1.	Practical DevOpsby Joakim Verona, 2017, Packt publishing			
2.	Ansible: Up and Running, Automating Configuration Management and Deployment the Easy			
	WaybyLorin Hochstein, Rene Moser, 2017			
3.	DevOps: A Software Architect's Perspectiveby Len Bass, Ingo Weber, Liming Zhu, 2018			
4.	Accelerate, The Science of Lean Software and DevOps: Building and Scaling High			
	Performing Technology Organizationsby Nicole Forsgren, Jez Humble, Gene Kim, 2019			
Text	Books			
5.	Effective DevOps: Building a Culture of Collaboration, Affinity, and Tooling at Scaleby			
<i>J</i> .	Jennifer Davis, Ryn Daniels by Orielly, 2017			
6.	Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment			
0.	Automationby Jez Humble and David Farley, 2018			

Detail Course Description

Course Code	21B12CS414	Semester ODD 2024		Semester ODD 2024 Semester: VII Session 2024 -2025 Month from July to Dec, 2024		
Course Name	Smart System and IoT					
Credits	3	Contact H		Hours	3-0-0	
Faculty (Names)	Coordinator(s)	Dr. Vikash,Janardan				
	Teacher(s) (Alphabetically)	Dr. Vikash, Janardan				

COURSE	OUTCOMES	COGNITIVE LEVELS
C431-6.1	Understand IoT and smart sensors systems and its various applications.	Understand (level 2)
C431-6.2	Classifyand Illustratedifferent sensors and its working principle for various applications.	Understand (level 2)
C431-6.3	Model smart systems using IoT standards, protocols,technologies, smart factory processes, recent industry 4.0+ standards, components and devices.	Apply (level 3)
C431-6.4	Evaluate and Assesssmart system prototype designs for real-life Smart Applications.	Evaluate (level 5)
C431-6.5	Design and Develop various smart system applications namely, Smart Cities, Smart Home, Smart Health care systems, Smart transportations Systems, Smart Wearable Systems, Smart Agricultural Systems and Smart Factories.	Create (level 6)

Module No.	Title of the Module	Details of the Modules	СО	Hours
1.	Introduction to Smart Sensor and IoT	Introduction:IoT, Smart Sensors, Measuring and Monitoring Environmental Condition, Different types of Smart Systems and its various application field using IoT.	CO1	4
2.	Different Sensors and its characteristics	Sensors: Working Principles: Different types; Selection of Sensors for Practical Applications; Introduction of Different Types of Sensors such as Capacitive, Resistive, Surface Acoustic Wave for Temperature, Pressure, Humidity, Toxic Gas etc. Important Characteristics of Sensors: Static and Dynamic.	CO2	5
3.	Design of smart sensors	Importance and need to embrace the Smart Sensors, Architecture of Smart Sensors: Important components, their features. Interfacing Circuit for Smart Sensors and its Challenges.	CO2	3
4.	Smart Home and Cities	Benefit from the IoT to improve energy efficiency, security and convenience, Introduction of intelligent and connected devices. Smart Metering of Gas, Water, Electricity, Kitchen appliances, Smart Grid, Smart Traffic Management systems.	CO4	4
5.	Smart Health care system	Aging population, Challenges in digital health-care adoption, Health-care environment, Electronic Health Record (EHR) systems, Connected Healthcare system, Smart Health using Smart Phones, Health Monitoring Equipment and Sensors,	CO4	3

		Security and Privacy issues in IoT Protocol, Big Data for			
	Concessat	Health Management System.	CO4	5	
6.	Smart Transportation	Introduction to Intelligent Transportation Systems (ITS), Broad categories: Public infrastructure and the Automotive	CO4	5	
	system	industry. Smart Transportation: Car Navigation, Traffic signal			
	·	control systems, Automatic number plate recognition, Speed			
		cameras, Management, Efficiency, and Safety. Challenges:			
		Security, Environmental Considerations, Supply Chain Resiliency, Power Consumption and Responsible Data			
		Management.SMART Dispatch System case study.			
7.	Smart Wearable	Smart Wearable: health, activity, mobility, and mental status	CO4	5	
	System	for both indoors and outdoors environment. Physiological			
		sensor systems, Mobility Measurement System Designs: IoT based Wireless protocols. Real-Time decision support			
		processing for disease prevention, symptom detection, and			
		diagnosis. Challenges in design of wearable devices: flexible,			
		lightweight, self-powered, miniaturized and self-healing materials.			
8.	Smart Agricultural	Precise Farming and Smart Farming, IoT components for	C04	3	
	System	Smart Farming: sensors, drones and robots. Suitable crops			
		and water requirements for optimization using Smart Farming, Satellite imagery detects for pest and decease, Field			
		Data analysis for profits, yields and patterns.			
9.	Smart Factory	Smart Manufacturing Processes and Industry 4.0- Three	CO3	6	
		Dimensions: (1) Demand Driven and Integrated Supply			
		Chains; (2) Dynamically Optimized Manufacturing Enterprises; (3) Real Time, Sustainable Resource			
		Management. Smart Design/Fabrication - Digital Tools,			
		Product Representation and Exchange Technologies and			
		Standards, Agile (Additive) Manufacturing Systems and Standards. Mass Customization, Smart Machine Tools,			
		Robotics and Automation (perception, manipulation,			
	mobility, autonomy), Smart Perception - Sensor networks				
1.0		and Devices.	~~~		
10.	Designing and prototyping a	Design and development of a prototype for the above discussed smart system application using IoT, Characteristics	CO5	4	
	Smart System	of the design: low cost, user-friendly interface, scalable and			
		reliable. Hardware and software co-design, basic			
		requirements of prototype demonstration.			
Evaluation					
Componer	nts N	Maximum Marks			
Tes-1 Test-2		20 20			
End Term Exam 35					
Attendance 10					
Assignment 7.5					
_	sed Learning 7.5				
Total 100					
		f 3-4 students will choose a project topic related to Sensor Netwo			
		tions. They will use a suitable sensor and sensing environment ma			
		ne problem. In a team, they will learn how to apply the concepts of Things applications. Apart from it, most of the project aimed to			
sensor technology to build Internet of Things applications. Apart from it, most of the project aimed to					

develop Smart Applications (like, Smart Cities, Smart Home, Smart Health care systems, Smart transportations Systems, Smart Wearable Systems, Smart Agricultural Systems and Smart Factories).

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) **Text Book** Internet of Things: Architecture and Design Principles, Raj Kamal, 2nd Edition 1. 9390727383 · 9789390727384, McGrawHill. 2012 **Reference Books** Learning Techniques for the Internet of Things by Donta, Praveen Kumar, Abhishek Hazra, and 2. Lauri Lovén, Imprint: Springer, 2024. IoT System Design by James, Alice, Avishkar Seth, and Subhas Chandra Mukhopadhyay, 2021. 3. Advances in Modern Sensors; Physics, design, simulation and applications by Sinha, G, R, IOP 4. (Institute of Physics Publishing), 2020 David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton, Jerome Henry, "IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things", 5. CISCO Press, 2017. Arshdeep Bahga, Vijay Madisetti, "Internet of Things – A hands-on approach", Universities 6. Press, 2015 Jan Ho"ller, Vlasios Tsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand, David Boyle, "From Machine-to-Machine to the Internet of Things -Introduction to a New Age 7. of Intelligence", Elsevier, 2014.

Detailed Syllabus

Subject Code	21B12CS415		Semester: 7 th Session: 2024-25 Month: July 2024 to December 2024			
Subject Name	Secure Design of Software Systems					
Credits	3	Contact Hours	3-0-0			

Faculty	Coordinator(s)	Dr. Shruti Jaiswal ,Dr. Tanvi Gautam
(Names)	Teacher(s) (Alphabetically)	Dr. Shruti Jaiswal , Dr. Tanvi Gautam

COURSE (OUTCOMES	COGNITIVE LEVELS
C431-13.1	Contrast various methods of securing data and invading (or breaching) security and privacy.	Understand (level 2)
C431-13.2	Apply different secure coding practices for improving the security and robustness of software system.	Apply (level 3)
C431-13.3	Use various open source security testing tools to discover security problems in the software system.	Apply (level 3)
C431-13.4	Analyze and model the security requirements during the secure development of the software system.	Analyze (level 4)
C431-13.5	Evaluate risks and associated impact of the various threats and attacks on different vulnerable points present in the software system.	Evaluate (level 5)

Module No.	Subtitle of the Module	Topics in the Module	No. of Lectures for the module	CO Mapping
1.	Security of a software	Introduction, the problem, Software Assurance and Software Security, Asset, Vulnerability, Threat, Risk, Threats to software security, Sources of software insecurity, What Makes Software Secure: Properties of Secure Software.	4	C431- 13.5
2.	Requirement engineering for secure software	Secure Development Lifecycle, The SQUARE process Model, Requirements elicitation and prioritization	4	C431- 13.4
3.	SecureDesign	Threat Modeling, Dataflow Diagram (DFD), Threat Tree (Attack Tree), STRIDE, DREAD, software security practices for architecture and design: architectural risk analysis, software security knowledge for architecture and design: security principles and guidelines.	7	C431- 13.4 C431- 13.5
4.	Secure Coding	Integer Overflows/underflows, Buffer Overflow, format string vulnerability,Beware of (escape characters, reserved words, delimiters and commands) attacks and defense,	7	C431- 13.2

5.	Security Testing	Static Analysis, Penetration Testing, Fuzz Testing, Code Auditing, Developers guidelines and Checklist, Security Review, Attack Surface review.	6	C431- 13.3
6.	Database Security and Auditing	Access control, Privileges, roles, Access Control Models, Design and Implementation of Discretionary Access Control, Role Based Access Control and Mandatory Access Control, Database Application Security models, SQL Injection, Virtual Private Databases, Database Auditing Models, Multilevel secure relational model, Watermarking relational databases, Security in distributed databases	8	C431- 13.1
7.	Data Privacy and Metrics	Attacks on Privacy, Sanitization mechanisms, Privacy Definitions: k-anonymity, 1-diversity, Protection against Background knowledge, Differential Privacy, Data anonymization, Anonymization operations: Generalization, Suppression, Anatomization, Permutation, Bucketization, Perturbation, Minimal distortion, Discernibility metric, Distinctive attribute.	6	C431- 13.1
		Total number of Lectures	42	
Evaluation	on Criteria			
Components T1 T2 End Semester Examination TA		Maximum Marks 20 20 35 25 Attendance (5), Assignment (5), Quiz (5), Mini Project (10)		
Total		100		

Project based learning:Students will work in a group of 3-4 students on a selected project.Students will be required to develop a secure application while following secure software development practices and having countermeasures implemented against injection attacks, buffer overflows, etcand maintain database security.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
	Text Books					
1	Robert C. Seacord: Secure Coding in C and C++, 2 nd Edition, SEI series in software engineering, 2013.					
2	Adam Shostack: Threat Modeling: Designing for Security, Wiley, 2014.					
	Reference Books					
1	Gary McGraw, Software security Building security IN, Addison-Wesley software security, 2006.					
2	Julia H. Allen, Sean J. Barnum, Robert J. Ellison, Gary McGraw, Nancy R. Mead: Software Security Engineering: A Guide for Project Managers, SEI series, 2008.					
3	Jason Grembi, Developing Secure Software, Cengage Learning, 2009.					

Detailed Syllabus

Course Code	21B12CS417	Semeste	er: ODD		Semester: VII Session: 2024-25 Month from: JULY-DEC, 2024	
Course Name	Machine Learning and Big Data (C431-12)					
Credits	3		Contact Hours		3-0-0	
Faculty (Names)	Coordinator(s) Shailesh Kumar, Deepika Varshney			hney		
	Teacher(s) (Alphabetically)	Shailesh Kumar, Deepika Varshney				

COURSE (COGNITIVE LEVELS	
C431-12.1	Identify the characteristics of datasets and the types of machine learning techniques.	Understand Level (Level 2)
C431-12.2	Utilization of online learning methods in the context of big data applications	Apply Level (Level 3)
C431-12.3	Select and implement machine learning techniques and computing environment that are suitable for the applications under consideration.	Apply Level (Level 3)
C431-12.4	Implement parallel learning algorithms using OpenMP/ CUDA/ OpenCL.	Apply Level (Level 3)
C431-12.5	Evaluate and validate different problems associated with big data characteristics for high dimensionality, and in scalability issues.	Evaluate (Level 5)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to ML and Big data	Representation of data and exploration. Modeling of machine learning techniques. Application of big data computing technologies.	4
2.	Machine learning techniques	Three phases of machine learning, types of learning, Support vector machine, Decision trees and Random forests. Deep learning.	6
3.	Online methods for linear and nonlinear models	Online linear learning, 2 nd order methods and analysis of convergence, LBGFS: BFGS and Limited Storage BFGS, Online learning for non-linear/non-convex models, Non-Convex Optimization in Machine Learning	6
4.	Big data computing environment	Hadoop; Map-reduce/All-reduce; Hadoop Distributed File System, map reduce, Linear Learning with All-Reduce	7
5.	Parallelization of learning algorithms	Introduction to parallel learning algorithms and implementation using OpenMP/ CUDA/ OpenCL.	7
6.	Scaling up machine learning-I	Inverted Indices & Predictive Indexing; Feature Hashing; Locally-sensitive Hashing & Linear Dimensionality Reduction; Nonlinear Dimensionality Reduction; Feature Learning; PCA, LDA, SVD.	6
7.	Scaling up machine learning-II	Handling Many Classes, class embedding; Active Learning; Concepts, Scenarios, Clustering based active learning, Semisupervised active learning, Exploration and Learning.	6

Total	number	of 1	Lectures
i viai	111111111761	.,,	ACCULUI CO

42

Evaluation Criteria	
Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
TA	25 (Attendance(10), Assignments/Mini-project/Tutorials/Quiz (15))
Total	100

Project based leaning: Groups of 3-4 students will choose a project topic. They will use a suitable computing environment and machine learning technique to solve a real time big data problem. In a team, they will learn how to apply the concepts for problem solving in a meaningful way.

Text	Books:								
1	Mining of Massive Datasets by Jure Leskovec, Anand Rajaraman, Jeff Ullman, 3 rd edition, Cambridge University Press, 2019 (http://infolab.stanford.edu/~ullman/mmds/book0n.pdf)								
2	Machine Learning - A Complete Exploration of Highly Advanced Machine Learning Concepts, Best Practices and Techniquesby Peter Bradley, Draft2digital, 25 June 2019								
Refe	erence Books:								
1	Data-Intensive Text Processingwith MapReduce by Jimmy Lin and Chris Dyer, Morgan publishers, 2010. (http://www.iro.umontreal.ca/~nie/IFT6255/Books/MapReduce.pdf)								
2	Guoqiang Zhong, Li-Na Wang, Xiao Ling, Junyu Dong, "An overview on data representation learning: From traditional feature learning to recent deep learning", The Journal of Finance and Data Science, Vol. 2 (4), pp. 265-278, 2016, ISSN 2405-9188, https://doi.org/10.1016/j.jfds.2017.05.001.								
3	Active Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning) by Burr Settles, Morgan & Claypool Publishers, 30 July 2012								

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code NBA Code					er VII Session 2024 -2025 from July-December,2024
Course Name	Ethical Hacking and	Prevention			
Credits	3		Contact I	Iours	3

Faculty (Names)	Coordinator(s)	P. Raghu Vamsi (J62),Shariq Murtuza (J128)
	Teacher(s) (Alphabetically)	P. Raghu Vamsi (J62),Shariq Murtuza (J128)

COURSE	OUTCOMES	Cognitive Levels							
C432-9.1	Summarize the concepts of hacking, Malwares, Network attacks, Denial of Service and counter measures								
C432-9.2	C432-9.2 Demonstrate foot printing and port scanning techniques using simple tools								
C432-9.3	Carryout vulnerabilities scanning, exploitation, and countermeasures in operating system, network and web application.	Apply Level (Level 3)							
C432-9.4	Examine wireless network and mobile system exploitation tools with prevention	Apply Level (Level 3)							
C432-9.5	Explain legal aspects of ethical hacking and writing pen testing report	Analyze Level (Level 4)							

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1	Overview	Types of Hackers, Introduction to Ethical Hacking, What is legal and what is not, TCP/IP overview	4
2	Reconnaissance and Prevention	Active and Passive Footprinting, Web tools for Footprinting, Information Gathering by Social engineering, Social Engineer Toolkit(SET), Prevention of Information gathering	4
3	Scanning and Prevention	Pings and Ping Sweeps, Port Scanning, NMap, Vulnerability Scanning, Enumerating OS,OS Vulnerabilities scanning – NETBIOS, Tools for identifying Windows and Linux vulnerabilities, Web applications vulnerability scanning, Preventing Scanning	4
4	Exploitation – Network and System	Techniques for Gaining Access, Remote service access, password crackers, Sniffing the Network, Network Attacks – ARP, Session Hijacking and Denial of Service	6
5	Exploitation – Web Based	Basics of Web Hacking, Nikto, Spidering, Webscarab, Code injection, PDF Hacking	4
6	Prevention of Exploitation	Protecting against Malware, Best practices for Hardening Operating Systems, Web Filtering, Secure routers, Firewalls, Honeypots, Intrusion Detection Systems	4
7	Post Exploitation and Defense	Maintaining access with Backdoors, rootkits and meterpreter, privilege escalation, Penetrating the Internal Network Further, Defense - Recovery and Counter attack	4

8	Mobile Hacking and Security							
9	Pentesting Report	Various types of penetration testing, security audit, vulnerability assessment, and penetration testing roadmap						
10	Legal Aspects of Ethical Hacking	Code of Ethics, Legal frameworks, Security Research Exemption, Whistle Blowing, Security Activism, IT Act 2000 and IT AA 2008						
		Total number of Lectures	42					
Evaluation	n Criteria							
Componer	nts	Maximum Marks						
T1		20						
T2		20						
End Semes	ster Examination	35						
TA		25 Attendance (10 Marks), Assignment/Quiz/Mini-project (1:	5 Marks)					
Total		100						

Project based learning: Student shall be a part of a group of 4-5 students and will be required to model and simulate real life enterprise system and apply ethical hacking tools to launch, detect and mitigate the attack. The highlighted content can be used to choose project topics that help students evaluate and apply the knowledge gained. The goal for each project is to work on case studies similar to those that a professional security tester comes across.

	commended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, ference Books, Journals, Reports, Websites etc. in the IEEE format)										
1.	Wylie, P. L., & Crawley, K. (2020). The Pentester Blueprint: Starting a career as an ethical hacker. John Wiley & Sons.										
2.	Wilson, R. (2022). Hands-on ethical hacking and network defense. Cengage Learning.										
3.	Singh, G. D. (2022). The Ultimate Kali Linux Book: Perform Advanced Penetration Testing Using Nmap, Metasploit, Aircrack-ng, and Empire. Packt Publishing Ltd.										
4.	Gregg, M. (2022). CEH Certified Ethical Hacker Cert Guide. Pearson IT Certification.										
5.	Christen, M., Gordijn, B., & Loi, M. (2020). The ethics of cybersecurity (p. 384). Springer Nature.										
6.	Chander, H., & KAUR, G. (2022). Cyber laws and IT protection. PHI Learning Pvt. Ltd.										

CO-PO-PSO Mapping

B.Tech (CSE)

	PO1	PO2	PO3	PO4	PO5	PO	PO	PO8	PO9	PO10	PO1	PO12	PSO1	PSO
						6	7				1			2
C432- 9.1	1 Basic concepts of ethical hacking	2 Fundamenta ls of ethical hacking steps related to network and system hacking						Application of security testing and countermeasur es for ethical practice in real world		Application of report writing methods to prepare security testing reports		Applicatio n of security testing principles for new technologi es		
C432- 9.2	3 Fundament als of foot printing process	3 Interpret the network scanning and enumeration results	Applying network enumerati on informatio n to prepare security testing plan	Using network enumeratio n, scanning, and footprintin g tools to interpret the network security policies	1 Applying network tools to special situations to gather informatio n			Application of security testing tools and countermeasur es for ethical practice in real world	1 Assignmen ts & group project based on security testing tools	2 Reporting and documenti ng network foot printing and scanning results			Usage of port and network scanning tools in security testing in various application domains	
C430-	2	2		3	3				1					
7.3	Apply social network analysis metrics to real-world datasets	Apply social network analysis metrics to real-world datasets		Analyze social networks using software tools	Apply software tool on real world social networks				Assignmen ts & group project based on real-world social networks					
C430-	2	3	3	3	3				1				2	
7.4	Essentials	Usage of	Applicatio	Usage of	Apply				Assignmen				Usage of	
	of link	link	n of link	community	link				ts & group				communit	
	prediction	prediction	prediction	detection	prediction				project				у	
	and .	and .	and .	algorithms	and				based on				detection	
	communit	community	communit	in various	communit				real-world				algorithm	
	y structure	detection	y detection	domains	у				social				s in	

	will be	algorithms	techniques	will be	detection	n	networks	,	various
	discussed			evaluated	technique			Ċ	lomains
					s on social				will be
					networks			e ^s	valuated
C430-	2	3	3	3	3		1		2
7.5	Basics of	Study the	Technique	Usage of	Apply	As	ssignmen	J	Jsage of
	informatio	flow of	s for	informatio	informatio	ts	s & group	in	formatio
	n flow in	information	maximizin	n diffusion	n		project		n
	networks	in social	g	models in	diffusion	b	based on	d	iffusion
	will be	networks	informatio	various	models on	re	eal-world	n	odels in
	discussed		n cascade	domains	social		social	,	various
			will be	will be	networks	n	networks	Ċ	lomains
			discussed	evaluated					will be
								e e	valuated

B.Tech (IT)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C430-	1	1	1	1										
7.1	Basic concepts	Fundamental	Application of	Application of										
	of social	network	network	network										
	network	models related	principles to	models to										
		to social	understand	understand										
		networks	real-world	real-world										
			social	social										
			networks	networks										
C430-	2	2	2	2					1					
7.2	Fundamentals	Interpret the	Applying	Using graph					Assignments &					
	of graph theory	network	graph theory	theory to					group project					
		structure	concepts to	interpret the					based on real-					
		using graph	social	network					world social					
		theory	networks	structure and					networks					
				characteristics										
C430-	2	2		3	3				1				2	
7.3	Apply social	Apply social		Analyze	Apply				Assignments &				Usage of	
	network	network		social	software tool				group project				software tools	
	analysis metrics	analysis		networks	on real world				based on real-				on real world	
	to real-world	metrics to		using software	social				world social				social networks	
	datasets	real-world		tools	networks				networks					
		datasets												
C430-	2	3	3	3	3				1				1	
7.4	Essentials of	Usage of link	Application of	Usage of	Apply link				Assignments &				Usage of	
	link prediction	prediction and	link prediction	community	prediction and				group project				community	
	and community	community	and	detection	community				based on real-				detection	
	structure will	detection	community	algorithms in	detection				world social				algorithms in	
	be discussed	algorithms	detection	various	techniques on				networks				various domains	
			techniques	domains will	social								will be evaluated	
				be evaluated	networks									
C430-	2	3	3	3	3				1				1	
7.5	Basics of	Study the	Techniques	Usage of	Apply				Assignments &				Usage of	
	information	flow of	for	information	information				group project				information	
	flow in	information in	maximizing	diffusion	diffusion				based on real-				diffusion models	
	networks will	social	information	models in	models on				world social				in various	
	be discussed	networks	cascade will	various	social				networks				domains will be	
			be discussed	domains will	networks								evaluated	
				be evaluated										

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	21B12CS412	Semester Odd (Specify Odd/)			r VII Session 2024 -2025 July 2024
Course Name	Cryptography and its	Applications			
Credits	3		Contact H	Iours	3-0-0

Faculty (Names)	ames) Coordinator(s) Prof. Sangeeta Mittal, Dr. Himanshu Agrawal	
	Teacher(s) (Alphabetically)	Dr. Himanshu Agrawal, Prof. Sangeeta Mittal

COURSE	OUTCOMES	COGNITIVE LEVELS
C430-8.1	Define the principles of cryptography along with the categorization of cryptographic algorithms and its applicability into various allied areas.	Remember Level (Level 1)
C430-8.2	Verify the feasibility and applicability of different symmetric cryptography, hash and MAC algorithms in distributed applications.	Understand Level (Level 2)
C430-8.3	Apply number theory for construction of asymmetric cryptography, Diffie Hellman Exchange and digital signatures applications.	Apply Level (Level 3)
C430-8.4	Analyse suitability of public key encryption RSA, El Gamal and ECC for securing distributed applications.	Analyze Level (Level 4)
C430-8.5	Apply multiparty secret sharing and zero knowledge techniques for data sharing among partially trusted parties	Analyze Level (Level 4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to cryptography	Historical ciphers along with their cryptanalysis, rigorous versus heuristic approaches; Cryptography in modern era, principles of defining security and its adversarial models, Perfect Secrecy and Its Limitations. Computational securities, Definition of secure encryption	4
2.	Categorization of cryptographic algorithms	Categories of cryptographic algorithms, Conceptual security, Introduction to public and private key cryptography and its applications.	3
3.	Symmetric cryptography models	How to construct secure encryption? Substitution-permutation and Feistel networks, Substitution-permutation and Feistel networks, Birthday attacks, The Random oracle model. Stream and Block Symmetric encryption algorithms - DES, AES, RC4, Construction of CPA-secure encryption, illustration of CCA attacks, Modes of implementation of symmetric ciphers	7
4.	Message authentication	Differentiate between secrecy and integrity, Security requirements of hash functions, Birthday attacks and the Random oracle model, Secure Hash Algorithm (SHA), MAC functions, CBC-MAC, HMAC, Password hashing.	4
5.	Number theory and Asymmetric key cryptography	Fundamentals of group theory, Factorization, discrete log and Primality testing, Introduction to public key encryption, Diffie-Hellman key exchange	6
6.	Public key encryption	Key management in public key encryption systems, Hybrid model of encryption and KEM/DEM, El Gamal encryption,	4

Total		100	
TA		25 (Attendance(10), Assignment/Quiz(5), PBL (10))	
End Semester Examination		35	
T2		20	
T1		20	
Compo	onents	Maximum Marks	
Evalua	tion Criteria		
		Total number of Lectures	42
	Techniques		
9.	Sharing and Zero Knowledge	Identification Techniques	4
	Multiparty Secret	Secret Splitting, Threshold Schemes, Feige-Fiat-Shamir	4
8.	Analysis of various cryptographic signature	Digital signature definition and its applications, RSA signatures: textbook RSA, hashed RSA, Digital certificates, Certificates and public-key infrastructures, Proxy signature, Kerberos.	6
7.	Cryptography (ECC) and Cryptoanalysis	(Diffie-Helman, El Gamal), Elliptic curve digital signatures (ECDSA, Bitcoin)	4
7.	Elliptic Curve	RSA; CCA secure RSA KEM. Elliptic curve over finite fields, Elliptic curve cryptosystems	4
		RSA: textbook encryption, attacks on textbook RSA, padded	

Project based learning:

Students form group of size 2-3 members. Each group will identify several security issues in distributed applications in various thrust areas like healthcare, industrial, education, smart city, logistics, environment, governance and etc. Once problem has been identified, the group will analyze the problem and synthesize system based solutions to the identified problem. Each group will apply different cryptographic approaches such as symmetric key, hash function, asymmetric key, and etc. This approach will enhance skills of each student and increase the understanding of security issue in distributed applications. Moreover, candidate will gain the enough knowledge to provide the cryptographic solution to enhance the security of any organization/company. After this course, a student will able to undertake any work in this area in the industry or research.

WOIK	in this area in the industry of research.		
	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
Text	Books:		
1.	DR Stinson, Paterson M. Cryptography: theory and practice, CRC press, 2018 Aug 14.		
2.	Keith Martin, Everyday Cryptography: Fundamental Principles and Applications, Oxford University Press, 2017.		
Refe	References:		
1	Alfred J. Menezes, Paul C. Van Oorschot and Scott A. Vanstone, A Handbook of Applied Cryptography, CRC Press Series on Discrete Mathematics and Its Applications, 1997		
2.	Michael Luby, Pseudorandomness and Cryptographic Application, Princeton University 1996.		
3.	Jonathan Katz and Yehuda Lindell, Introduction to Modern Cryptography, Second Edition (2nd. ed.). Chapman & Hall/CRC, 2014.		
4.	ACM Transactions on Privacy and Security (TOPS)		
5	IEEE Transactions on Information Forensics and Security		

<u>Detailed Syllabus</u> Lecture-wise Breakup

Subject Code	21B12CS413	Semester Odd	Semester: 7 th Session: 2024-25 Month: July to December 2024
Subject Name	Fog and Edge Computing		
Credits	3	Contact Hours 3-0-0	

Faculty	Coordinator(s)	Dr K. Rajalakshmi (J62), Ms. Akanksha Mehndiratta (J128)		
(Names)	Teacher(s) (Alphabetically)	 Ms. Akanksha Mehndiratta (J128) Dr K. Rajalakshmi (J62) 		
	COURSE (OUTCOMES	COGNITIVE LEVELS	
C431-11.1	Define the technologie used for cloud and IoT	s, architectures, entities and protocols, systems	Remember Level 1	
C431-11.2	Illustrate need, advantages, disadvantages, and application opportunities of fog and edge computing		Understand Level 2	
C431-11.3	Outline the architecture, components and performance of fog and edge computing systems		Understand Level 2	
C431-11.4	Model and simulate a f	og or edge scenario	Apply level 3	
C431-11.5	Examine the challenges and techniques of data analytics in fog and edge computing		Analyze Level 4	
C431-11.6	Assess the application protocols in IoT smart	of fog and edge computing methods and systems	Evaluate Level 5	

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Distributed Systems	Review of principles and concepts of Distributed Systems. Evolution of distributed systems: from mainframes to cloud to edge, Multi-tier distributed system architectures, Logical Time vs Physical Time	3
2.	Internet of Things	IoT Architecture & Technologies which include WSN (Wireless Sensor Networks) and IoT cloud computing, characteristics of IoT device platforms and products.	4
3.	Cloud computing	Cloud Computing characteristics of elasticity, multi-tenancy, on-demand access, ubiquitous access, usage metering, self-service capability, SLA-monitoring, Cloud Service Models/Types, Cloud deployment models, Mobile Cloud Computing, Virtual Machines, Containers	3

4.	Fog Computing	Definition, Characteristics, Application Scenarios, Issues, Fog Computing and Internet of Things, Pros and Cons, Need and Reasons for Fog Computing, Integrating IoT, FOG, Cloud- Methodology and Benefits	6
5.	Edge Computing	Introduction, Origins of edge, Difference from fog, Edge helping low-end IoT nodes, Edge helping higher-capability mobile devices: mobile offloading, Edge helping the cloud, Data processing on the edge, Compare architectural design options regarding the tradeoff between computations in an IoT system, at edge or at cloud depending on application demands and resource constraints, Hierarchy of Fog and Edge Computing	5
6.	Fog and Edge Computing Architecture	Performance Evaluation Components, Metrics, Architecture- Modeling, Proximity Detection Protocols, FaaS, Middleware for Fog and Edge Computing	7
7.	Data Management in Fog Computing	Fog Data Management, Big Data Analytics in the Fog, Machine Learning in Fog Computing, Security and Privacy Issues	6
8.	Case Studies	Related Paradigms of Mobile Edge Computing, Mist Computing, Mobile Ad hoc computing etc. Fog Enhanced Smart Homes and buildings, Modeling and Simulation of Fog and Edge Computing Environments Using iFogSim Toolkit	8
			42

Evaluation Criteria

Components N	Maximum Marks
---------------------	----------------------

T1 20 T2 20 End Semester Examination 35

TA 25 (Attendance = 10, Assignment/Quiz=8, Mini-Project=7)

Total 100

Project based learning: Each student in a group of 4-5 will study a practical problem in fog and edge computing in detail along with its real-world applications. They will present it as a Case study or give a practical demonstration of the problem and its solution. This detailed study on distributed environment will help their employability into IT sector.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

References text books

1.	Buyya, Rajkumar, and Satish Narayana Srirama, eds. "Fog and edge computing: principles and paradigms". John Wiley & Sons, 2019.
2	Chang, Wei, and Jie Wu. "Fog/Edge Computing For Security, Privacy, and Applications." Springer International Publishing, 2021
3.	Mahmud, R., Kotagiri, R., & Buyya, R., "Fog computing: A taxonomy, survey and future directions". In Internet of Everything (pp. 103-130). Springer, Singapore, 2020

4.	Ivan Stojmenovic, Sheng Wen ," The Fog Computing Paradigm: Scenarios and Security Issues" Proceedings of the 2014 Federated Conference on Computer Science and Information Systems pp. 1–8, 2020
5.	Cao, Jie, Quan Zhang, and Weisong Shi. <i>Edge computing: a primer</i> . Springer International Publishing, 2018.
Reference	e Books
6.	Mahmud, Redowan, and Rajkumar Buyya. "Modelling and simulation of fog and edge computing environments using iFogSim toolkit." <i>Fog and edge computing: Principles and paradigms</i> (2019): 1-35, 2019
7.	Dastjerdi, Amir Vahid, Harshit Gupta, Rodrigo N. Calheiros, Soumya K. Ghosh, and Rajkumar Buyya. "Fog computing: Principles, architectures, and applications." In <i>Internet of things</i> , pp. 61-75. Morgan Kaufmann, 2016.
8.	Dastjerdi, Amir Vahid, and Rajkumar Buyya. "Fog computing: Helping the Internet of Things realize its potential." <i>Computer</i> 49, no. 8 (2016): 112-116.
9.	Serpanos, Dimitrios, and Marilyn Wolf (2017). Internet of things (IoT) Systems: Architectures, Algorithms, Methodologies. Springer. DOI:https://doi.org/10.1007/978-3-319-69715-4
10.	Buyya, Rajkumar et al. "Cloud Computing Principles and Paradigms." Wiley, 2011.