Lecture-wise	Breakup
--------------	---------

Course Code	17M11EC118	Semester Odd (specify Odd/Even		Semes Month	ter 1 st Session 2021-2022 from July to December
Course Name	ADVANCED DIGIT	DVANCED DIGITAL SIGNAL PROCESSING			
Credits	3		Contact H	ours	3

Faculty (Names)	Coordinator(s)	Dr. Vineet Khandelwal
	Teacher(s) (Alphabetically)	NIL

h			
COURSI	COURSE OUTCOMES At the end of the semester, students will be able to		
CO1	Recall the principles of various transform techniques like Z, Chirp Z, Hilbert, Discrete Fourier transform and Fast Fourier Transform.	Applying Level (C3)	
CO2	Demonstrate the ability to apply different methods to design and analyze digital FIR (Finite Impulse Response) and IIR (Infinite Impulse Response) filters with its structural realization.	Analyzing Level(C4)	
CO3	Analyze Multirate signal processing and examine its application.	Analyzing Level(C4)	
CO4	Comprehend different methods for designing adaptive filters and examine its application	Analyzing Level(C4)	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Review of Digital Signal Processing	Review of discrete-time sequences and systems, Linear Shift Invariant (LSI) systems. Causality and Stability Criterion, FIR & IIR representations, Z-Transform, Discrete Fourier Transform (DFT), Fast Fourier Transform (FFT) algorithms using decimation in time and decimation in frequency techniques, Chirp Z- Transform, Hilbert Transform and applications	6
2.	Design of IIR and	Digital filter specifications, selection of filter type, and filter	12

	FIR Filters	order, FIR filter design; using windowing Techniques, Fourier Series and frequency sampling method, Design of IIR Filters Using Butterworth, Chebyshev and Elliptic Approximations, Frequency Transformation Techniques; approximation of derivatives, Impulse invariant method, Bilinear transformation, Structures for IIR Systems – Direct Form I & II, Cascade, Parallel, Lattice & Lattice-Ladder Structures, Structures For FIR Systems – Direct, Cascade, Parallel, Lattice & Lattice ladder Structures.	
3.	Multirate Digital Signal Processing	Decimation & Interpolation, Sampling rate conversion, Identities, polyphase decomposition, General polyphase framework for Decimator and Interpolator, Multistage decimator and Interpolator, Efficient transversal structure for Decimator and Interpolator, FIR and IIR structure for Decimator, Filter design for FIR decimator and Interpolator, Application of Multirate Signal processing.	14
4.	Adaptive Filters	Introduction, Application of adaptive filters, correlation structure, FIR Weiner Filter, Adaptive Direct-form FIR filters Adaptive Lattice-Ladder filters, Introduction to linear prediction, linear prediction and autoregressive modeling.	10
		Total number of Lectures	42
Evaluation	Criteria		
Component T1 T2 End Semes TA Total Project Ba	ter Examination sed learni	Maximum Marks 20 20 35 25 100	

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	J.G. Proakis & D.G. Manolakis, "Digital Signal Processing, Principles, Algorithms and Applications", 4 th Edition, PHI, 2012				
2.	Aurelio Uncini, "Fundamentals of Adaptive Signal Processing", Springer Nature, Jan 2015.				
3.	Tulay Adah and Simon Haykins, "Adaptive Signal Processing: Next Generation Solutions", Wiley India, 2012.				

Course Code	20M31EC113	Semester :Odd 2021(specify Odd/Even)		Semeste Month f	er lst Session 2021 -2022 from July 2021 –Dec 2021
Course Name	Introduction to Machine Learning				
Credits	3	Contact Hours		ours	3

Faculty (Names)	Coordinator(s)	Dr. Abhinav Gupta
	Teacher(s) (Alphabetically)	Dr. Abhinav Gupta

COURSE O	UTCOMES	COGNITIVE LEVELS
<u>CO1</u>	Illustrate various machine learning approaches	Understanding
		(C2)
	Experiment with the different techniques for feature extraction and	Applying
CO2	feature selection	(C3)
603	Apply and analyze various classifier models for typical machine	Analyzing
03	learning applications	(C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction and Basic Concepts	Linear algebra, Probability distributions, Types of Data, Linear Models for Regression, Feature Extraction and Feature Selection.	10
2.	Introduction to Neural Networks	Neuron Model and Network Architectures: Perceptron and Hamming networks. Perceptron learning rule, Steepest Descent, Stable Learning Rates. Multilayer Perceptrons: Generalization, Methods for Improving Generalization.	6
3.	Decision Tree Learning	Decision Tree Representation, Construction of Decision Trees: Entropy Impurity, Variance Impurity, Misclassification Impurity. Axis-Parallel and Oblique Decision Trees, Issuesin decision tree learning.Random Forests	9

4.	Data Clustering	Unsupervised learning, Basic clustering methods, Principal component analysis for feature reduction	6
5.	Support Vector Machines	Linear maximum margin classifier for linearly separable data, Linear soft margin classifier, Kernel induced feature spaces, Nonlinear classifiers, Regression by SVM, SVM variants.	10
		Total number of Lectures	41
Evaluation	Criteria		
Componer	nts	Maximum Marks	
T1 -		20	
T2		20	
End Semes	ter Examination	35	
ТА		25 (5 Assignment, 5 Quiz, 5 Class Participation, 10 Attendand	ce)
Total		100	

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	Applied Machine Learning, M. Gopal, McGraw Hill, 2018.		
2.	Machine Learning: The New AI, E. Alpaydin, The MIT Press Essential Knowledge series, 2016.		
3.	Machine Learning Yearning , Andrew Ng, Deeplearning.ai,2018.		
4.	The Elements of Statistical Learning, T. Hastie, R. Tibshirani, J. Friedman., 2nd Edition, Springer, 2008.		
5.	Machine Learning, T. Mitchell, McGraw Hill, 1997.		
6.	Pattern Recognition and Machine Learning, C.M. Bishop, 2nd Edition, Springer, 2011.		

Course Code	20M31EC114	Semester: ODD 2021	Semester: 1st Session: 2021-22
		(specify Odd/Even)	Month from: Aug 2021 to Dec 2021
Course Name	Digital Image and Video	o Processing	
Credits	3	Contact Hours	3
Faculty (Names) Coordinator(s)	Richa Gupta	
	Teacher(s) (Alphabetically)	Richa Gupta	

COURSE O	UTCOMES- At the completion of the course, students will be able to	COGNITIVE LEVELS
C115.1	familiarize with the concept of digital image formation, image	Applying Level (C3)
	structure and transform coding.	
C115.2	understand the basics of digital image processing with necessary	Applying Level (C3)
	skills to solve practical problems.	
C115.3	Learn fundamentals of digital video processing, motion	Applying Level (C3)
	estimation and compensation.	
C115.4	Identify the need of image & video compression, and image & video	Applying Level (C3)
	applications.	

Module No.	Title of the Module	Topics in the module	No. of Lectures for the module
1.	Fundamentals of Digital Image and Image Transform	Basics of digital image processing, Structure of the Picture Information, luminance and chrominance components, RGB components, Transform Coding, Discrete Cosine Transforms – 1 D and 2D. Energy compaction.	6
2.	Digital Image Processing	Image Enhancement - Spatial Domain Processing: Digital Negative, Contrast Stretching, Thresholding, Gray Level Slicing, Bit Plane Slicing, Log Transform and Power Law Transform. Neighborhood Processing: Averaging filters, Order statistics filters, High pass filters and High boost filters, Filtering in frequency domain: Smoothing and Sharpening filters, Image Segmentation, Image Restoration & Construction, Morphological Image Processing, Image quality assessments.	10

3. Digital Video Digital Video Sa Processing Frame Classificati Motion Estimation motion estimat Enhancement a Assessment.	ampling and Interpolation, Video ions, I, P and B frames, Notation, n and compensation, Application of tion in video coding, Video and Restoration, Video quality	9
4. Image Data Compression Compression and Compression, Video Compression algorithms of sou Resilient Code applications, Bas Photographic Ex Basics of Video C frame redundar H.263++	n: Lossless Compression and Lossy Optimal codes, Construction urce codes - Huffman Codes, Error es-types, construction and sics of Image Compression, Joint spert Group (JPEG) compression, Compression, Inter-frame and Intra- ncy, Video Coding Standard –	10
5. Image and Video Image and Video Applications Processing, Image Video surveillance	o Segmentation, Biomedical Image ge Annotation, Video Annotation, e.	8
	Total number of Lectures	43
Evaluation Criteria		
ComponentsMaximum MarksT120T220End Semester Examination35TA25 (Attendance, Performance)	ormance. Assignment/Quiz)	
Total 100		

Project Based Learning: Students are required to prepare a consolidated summary (including approach, limitations, pros and cons, applications, scope etc.) of any recent research paper published in reputed International Conference or International Journal related to Image and Video processing. They will submit this research assignment towards the end of the semester.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Gonzaleze and Woods, "Digital Image Processing using MATLAB", 2nd Edition, McGraw Hill Education, 2010.
2.	K. Sayood, Introduction to data compression, Elsevier, 5 th edition, 2017
3.	A Murat Tekalp, "Digital Video Processing", Prentice Hall, 2 nd Edition, 2015

Subject	20M32EC114	Semester Odd	Semester 1 st Session 2021-22
Code			Month from Sept 2021 to Jan 2022
Subject Name	Speech and Audio Signal Processing (Elective M.Tech MLSP)		
Credits	3	Contact Hours	3-0-0

Faculty	Coordinator(s)	Kuldeep Baderia,
(Names)	Teacher(s) (Alphabetically)	Kuldeep Baderia

COURSE O	UTCOMES	COGNITIVE LEVELS
C125.1	Identify various classicification of speech signals and their corresponding phonetics	Applying Level (C3)
C125.2	Test for their Knowledge in understanding time domain techniques and frequency domain techniques etc.	Analyzing Level (C4)
C125.3	Explain Homomorphic signal processing and Linear predictive analysis of speech signals	Understanding Level (C2)
C125.4	Analysis of Digital Encoding of speech signal.	Analyzing Level (C4)

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Fundamentals of Human Speech Production	Introduction, The Process of Speech Production, Short-Time Fourier Representation of Speech, Acoustic Phonetics , Distinctive Features of the Phonemes of American English	5
2.	Time-Domain Methods for Speech Processing	Short-Time Analysis of Speech, Short- Time Energy and Short-Time Magnitude, Short-Time Zero-Crossing Rate, The Short-Time Autocorrelation Function ,The Modified Short-Time Autocorrelation Function, The Short- Time Average Magnitude Difference Function	8

3.	Frequency-Domain Representations	Discrete-Time Fourier Analysis, Short-Time Fourier Analysis, Spectrographic Displays, Overlap Addition Method of Synthesis, Filter Bank Summation Method of Synthesis, Time-Decimated Filter Banks, Two-Channel Filter Banks, Implementation of the FBS, Method Using the FFT, OLA Revisited, Modifications of the STFT.	8
4.	The Cepstrum and Homomorphic Speech Processing	Homomorphic Systems for Convolution, Homomorphic Analysis of the Speech Model , Computing the Short-Time, Cepstrum and Complex Cepstrum of Speech, Homomorphic Filtering of Natural Speech, Cepstrum Analysis of All-Pole Models Cepstrum Distance Measures	8
5.	LINEAR PREDICTIVE ANALYSIS OF SPEECH	Computation of the Gain for the Model ,Frequency Domain Interpretations of Linear Predictive Analysis, Solution of the LPC Equations The Prediction Error Signal	8
6	Digital Coding of Speech Signals	Sampling Speech Signals, A Statistical Model for Speech, Instantaneous Quantization Adaptive Quantization Quantizing of Speech, Model Parameters, General Theory of Differential Quantization, Delta Modulation ,Differential PCM (DPCM), Enhancements for ADPCM Coders ,Analysis-by-Synthesis Speech Coders, Open-Loop Speech Coders	5
	п <u>.</u>	Total number of Lectures	42
Evaluation CriteriaComponentsMaximum MarksT120T220End Semester Examination35TA25(Attendance, Performance. Assignment/Quiz)Total100			
Project based Learning Component: Speech and Audio signal processing is very important part of every communication system. In this course various project based learning components have been included like STFT, Cepstrum and Homomorphic Speech Processing, analysis and recognition of speech and audio system etc. During this subject students will learn various practical aspects of speech and audio digital signal			

processing.

Recommende books, Referen	d Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text ce Books, Journals, Reports, Websites etc. in the IEEE format)
1.	L. Rabiner, R. Schafer, Theory and Applications of Digital Speech Processing, Pearson, 2011
2.	J. R. Deller, J. H. L. Hansen, J. G. Proakis. Discrete-Time Processing of Speech Signals. IEEE Press, 2000
3.	Daniel Jurafsky, James H. Martin, Speech and Language Processing, 2nd Edition, Pearson, 2009
4.	Dr. Shaila D. Apte, Speech and Audio processing.Wiley-India, 2019.
5.	Ben Gold and Nelson Morgan, Speech and Audio Signal Processing- Processing and Perception of Speech and Music. Wiley-India, 2006.

Course Code	19M12EC112	Semester Odd semester (specify Odd/Even)		Semest Month	er 1 ST Session 2021-22 from August 2021 to Dec 2021.
Course Name	Soft computing				
Credits	3		Contact	Hours	3

Faculty	Coordinator(s)	Dr. Vijay Khare
(Names)	Teacher(s) (Alphabetically)	Dr. Vijay Khare

COURSE	OUTCOMES	COGNITIVE LEVELS
C120. 1	Explain soft computing techniques and their roles in building intelligent machines	Understanding Level (C2)
C120.2	Apply neural networks to pattern classification and regression problems	Applying Level (C3)
C120.3	Apply fuzzy logic and genetic algorithms to handle uncertainty and optimization problems	Applying Level (C3)
C120.4	Evaluate and compare solutions by various soft computing approaches for a real time problem use existing software tools.	Evaluating Level (C5)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Introduction of soft computing .evolution of computing, hard computing and soft computing, soft computing methods.	2
2.	Fundamental of neural network	Introduction of neural network , Neuron models and n/w architecture Learning in Artificial Neural Networks; Supervised, Unsupervised and Competitive Learning paradigms, perceptron neural network: Adaline and Madaline	7
3.	Feed forward neural network and applications	Multi layer Feed forward neural network, back propagation algorithms and radial basis neural network, Application of neural network	8
4.	Associated Memory	Auto associative memory, Hetro associated memory bidirectional associated memory	5
5.	Unsupervised learning	LVQ(Learning Vector Quantization) Self organization map, Adaptive resonance theory	6
6.	Fuzzy logic	Introduction, classical and Fuzzy sets & operations	9

		crisprelation and fuzzy relation Fuzzy rules based system, Fuzzy Controller Design	
7.	Genetic Algorithms	Introduction of Genetic Algorithms, Genetic Operators, Crossover and mutation properties, Genetic Algorithms in Problem Solving,	8
Total number of Lectures			
Evaluatio	n Criteria		
Components T1 T2 End Semester Examination TA Total		Maximum Marks 20 20 35 25 (5 Assignment, 5 Quiz, 5 Class Participation, 10 Attendance) 100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1	Jacek M. Zurada, Introduction to Artificial Neural Systems, Jaico Publishing House, 1994
2	Martin T. Hagan, Howard B. Demuth, Mark Beale, Neural Network Design-Martin Hagan, 2014
3	SimonHykins, Neural Networks And Learning Machines, Pearson Publishing House, 2016
4	S. N. Sivanandam& S. N. Deepa, Principles of Soft Computing, Wiley - India, 2018
5	Clinton Sheppard, Genetic Algorithms with Python CreateSpace Independent Publishing Platform (April 29, 2016
6	Rajasekharan and Rai, Neural Networks, Fuzzy logic, Genetic algorithms: synthesis and applications ,PHI-2013

Lab	-wise	Breal	kup
Luv		Dica	nup.

Course Code	20M35EC111	Semester ODD (specify Odd/Even)		Semeste Month f	er 1st f rom	Session 2021 -2022 June- July
Course Name	Advanced Signal Processing Lab (MATLAB)					
Credits	3		Contact H	ours		6

Faculty (Names)	Coordinator(s)	Vineet Khandelwal
	Teacher(s) (Alphabetically)	Vineet Khandelwal

COURSE At the co	OUTCOMES: mpletion of the course, students will be able to:	COGNITIVE LEVELS
CO1	Understand applications of MATLAB in advanced signal processing.	Understanding Level (C2)
CO2	Apply MATLAB for analysing signal operations, transformations and filtering on signals for different application areas in signal processing.	Analysing Level (C4)
C03	Apply MATLAB/Python for implementing and analysing arithmetic operations, transformations and filtering on digital images.	Analysing Level (C4)

Module No.	Title of the Module	List of Experiment	со
1.	Introduction to MATLAB	Introduction to MATLAB and its various applications in advanced signal processing.	C1
2.	Introduction to Spectral Analysis	Spectral Analysis of a signal over time	C2
3.	Spectral leakage and windowing	Spectral Leakage and Windowing	C2
4.	Design of FIR filter	Design and analysis of Digital FIR filter for audio denoising .	C2

5.	Design of IIR filter	Design and analysis of Digital IIR filter for audio denoising	C2
6.	Design of Wiener filter	Design of Optimal Wiener filter for signal denoising	C2
7.	Image Deblurring	Restoration of motion blurred images with Wiener Filte	C3
8.	Image Denoising	Denoising of images using Wiener filtering	C3
9.	Image Compression	JPEG compression of images for various compression ratios	C3
10.	Virtual Lab: Colour Image Processing	To learn how to handle and process the colour images.	C3
11.	Virtual Lab: Image Processing Test Bench	To learn to build algorithms for solving problems and to build solutions using a cascade of image processing modules.	C3
Evaluation Compone Viva 1(M Viva 2(Er Assessme	n Criteria ents Maxi id Sem Viva) 2 id Sem Viva) 2 nt Components 3	mum Marks 0 0	
Attendance Lab Recon Total	e 1 rd 1 1	5 5 00	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)							
1.	J. UNPINGCO: Python for Signal Processing, Springer International Publishing Switzerland, 2014.						
2.	M. WICKERT: Signal Processing and Communications: Teaching and Research Using IPython Notebook, In Proc. of the 14th python in science conf., (scipy. 2015).						
3.	R. C. GONZALEZ, R. E. WOODS: Digital Image Processing, 4th edition, Pearson Education Inc, 2018.						
4.	S. DEY: Hands-On Image Processing with Python, Packt Publishing, 2018.						

Evaluation scheme for different assessment components (AC's),

1. AC1. To build up understanding of experiment (Quality)

2. AC2. Lab exercises to gain insight in to the theoretical concepts (Quantity)

Every Experiment has two AC's, each of 10 Marks. If in total 10 experiments are there, then total 300 marks, which will be scaled down to 30 at the end.

During Mid Sem Viva and End Sem Viva, 20 Marks are divided as

- (i) 10 marks for viva and
- (ii) 10 marks for performance.

Course Description

Course Code		18M11GE111	Se	mester Odd	Semester I Session Month from July 202		n 2021-22 021 - Dec 2	2021-22 21 - Dec 2021		
Course Na	me	ne Research Methodology & Intellectual Property Rights								
Credits		2		Contact Hours	ontact Hours		2-0-0			
Faculty		Coordinator(s)		Prof. B.P.Chamola						
(Names)		Teacher(s) (Alphabetically)	Prof. B.P. Chamola						
COURSE	OUT	COMES:	1		COGNITIVE LEVELS					
After pursu	ing t	he above mention	mentioned course, the students will be able to:							
C101.1 exp		lain the basic concepts and types of research					Understanding Level (C2)			
C101.2	define a research problem, its formulation, methodologies and analyze research related informationAnalyzing Level (C4)						ng Level (C4)			
C101.3 exp		explain research ethics, understand IPR, patents and their filing Un related to their innovative works.					Understar	Understanding Level (C2)		
C101.4 exp tes		plain and analyze the statistical data and apply the relevant st of hypothesis in their research problems					Analyzing Level (C4)			
Module Ti No.		le of the Module		Topics in the Module				No. of Lectures for the module		
1.	Res	earch	1	What is research? research? How to r	Types o read a Jo	of research. W ournal paper?	3			
2.	Rep	port writing	Writing How to write report? Use of Mendeley in report writing. How to write a research paper? Problem identification and solving.				4			
3.	Ethics, IPR and Research methodologiesResearch ethics, patents, intellectual property rights, plagiarism regulation 2018. Steps in research process and common methodologies to attempt solution to research paper.						8			
4.	Bas and dist	ics of statistics probability ributions]	Basic statistical co Some common pro	ncepts. Handling of raw data, 7 obability distributions.					
5.	Tes and	t of hypothesis regression]	Hypothesis testing parametric data, In	Parametric and non- troduction to regression					

	analysis	analysis.						
	30							
(Course delivery method: open ended discussion, guided self-study, lectures)								
Evaluation Criteria								
Componen	nts	Maximum Marks						
Mid Term Examination		30						
End Semes	ter Examination	40						
Assignmen	ts	30 (Quiz, Assignments)						
Total		100						

Project based learning: Students divided in small groups will be assigned topics related to patents, intellectual property rights, plagiarism, and statistics. Students can write a report/review paper and find its similarity through plagiarism software available online. Students may collect data and test the relevant hypothesis. They may study some data set and do its regression analysis. The main purpose is to expose students to a wider arena of applicable knowledge of the subject.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

Stuart Melville and Wayne Goddard, Research Methodology: An Introduction for Science & Engineering Students, Kenwyn, South Africa: Juta & Co. Ltd., 1996.

Kothari, C.R., Research Methodology: Methods and Techniques, New Age International, New Delhi, 2009.

Kumar, Ranjit, Research Methodology: A Step by Step Guide for Beginners, 2nd Edition, Sage Publications Ltd., 2005.

Ramappa, T., Intellectual Property Rights Under WTO, S. Chand, New Delhi, 2008.

Wayne Goddard and Stuart Melville, Research Methodology: An Introduction, Kenwyn, South Africa: Juta & Co, 2001.