JAYPEE INSTITUTE OF INFORMATION AND TECHNOLOGY

M.Sc. Environmental Biotechnology Semester I

Biomolecules

Course Code	19M21BT113	Semester: Odd	1	Semester Session:	er: I 2022-2023 July-December
Course Name	Biomolecules				
Credits	3		Contact H	Iours	3

Faculty (Names)	Coordinator(s)	Dr. Priyadarshini	
	Teacher(s) (Alphabetically)	Dr. Priyadarshini, Dr. Reema Gabrani	

COURS	E OUTCOMES	COGNITIVE LEVELS
C113.1	Explain the biomolecule's structure and function	Understand Level(C2)
C113.2	Analyze bioenergetics and metabolic pathways for physiological and Pathological conditions	Analyze Level (C4)
C113.3	Apply the concepts of enzymes, hormones and signaling	Applying Level (C3)
C113.4	Illustrate the basics in genomics and proteomics	Understand Level(C2)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Carbohydrates	Chemical composition and bonding; Carbohydrates: Classification, basic chemical structure; General reactions of the functional groups; Physiological significance; Metabolism of carbohydrate: Glycolysis, TCA, gluconeogenesis, PPP	7
2.	Lipids	Classification, structure and function of major lipid subclasses; chylomicrons, LDL, HDL, and VLDL; Pathological changes in lipid levels. Formation of micelles, monolayers, bilayer, liposomes; biosynthesis of fatty acids and ketogenesis	7
3.	Proteins	Amino acids: Classification, Properties, Protein Structure: primary, secondary, tertiary and quaternary structure; separation techniques; Enzymes: kinetics, functions; biosynthesis of non-essential amino acids and catabolism of protein and amino acids in born errors of metabolism.	7
4.	Nucleotides	Nucleic acid structure, Nucleotides and nucleosides; metabolism of purines and pyrimidines	6

5.	Bioenergetics	ATP role; respiratory chain and oxidative phosphorylation	4		
6.	Hormones	Characteristics of hormones/ signalling molecules; function, signal transduction	6		
7.	Introduction to Genomics and proteomics	DNA sequence analysis methods; gene disease association; Introduction and scope of proteomics	5		
	Total number of Lectures				
Evolue	Evaluation Critaria				

Evaluation Criteria

Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
TA	25 (Presentation, Assignments)
Total	100

PBL: Students will choose any biomolecule/ hormone linked to a particular disease. How is it commercially used as a therapeutic molecule or as a target to manage the disease? The understanding of biomolecules is required for Biotechnology companies including patent firms.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Biochemistry, L. Stryer, W.H. Freeman, San Francisco.

Schaum's Outline Series of Theory and Problems of Biochemistry, Philip W. Kuchel and G.B. Ralston. Int. Ed., McGraw-Hill Book Co.

3. Biochemistry by Voet and Voet

4. Principles of Biochemistry, Lehninger C Rs. Publ.

Environmental Biotechnology Lab-I

Course C	ode	20M35BT111	Semester Odd	i	Semester I Session 2022-202	
					Month i	from July to December
Course N	ame	Environmental Bioto	echnology Lab-I			
Credits		0-0-4	0-0-4 Contact Hours 8			8
Faculty Coordinator(s) Dr. Manisha Singh						
(Names)		Teacher(s) (Alphabetically)	Prof. Sudha Srivastava, Dr. Ekta, Dr. Susinjan Bhattacharya, Dr. Manisha Singh, Dr. Ankisha Vijay			Susinjan Bhattacharya, Dr.
COURSE OUTCOME		OMES Students will b	e able to			COGNITIVE LEVELS
CO1	Analy	ze quantitation and pu	rification techniq	ues of biom	olecules	Analyze Level (C4)
CO2	Analy	ze quality and differer	ntiate various forr	ns of isolat	ed DNA	Analyze Level (C4)
CO3	Apply	concepts of microbial	bial genetics Apply Level (C3)			Apply Level (C3)
CO4	Exper	iment with environme	nmental parameter detection procedures Apply Level (C3)			Apply Level (C3)
CO5	Analy	ze biological datasets	s using statistical tools Analyze Level (C4)			

Module No.	Title of the Module	List of Experiments	
1.	Analytical Techniques	Preparation of buffers; Quantitative determination of proteins, carbohydrates, nucleic acids; Analysis of amino acids by TLC; Purification of proteins and their analyses using Chromatography techniques	CO1

		 a) Ion exchange chromatography, b) Size exclusion chromatography and c) Affinity chromatography 	CO2
2.	Nucleic acid isolation and quantification	Genomic DNA isolation; Plasmid DNA isolation; DNA/RNA quantification	CO2
3.	Microbial genetics	Microbial antibiotic resistance, comparative analysis of microbial genomes	CO3
4.	Environmental Parameters	Introduction to Metering Devices (pH, Turbidity, Conductivity and DO); Alkalinity of Natural; Waters volumetric Analysis, Technical Report; Nitrites/Nitrates in Drinking Water; Spectrophotometry/ Calibration Curves; Ortho-Phosphates in wastewater, heavy metal detection assay	CO4
5.	Biostatistical analyses	Computational tools for statistical analysis of biological data; SPSS, Excel, GraphPad - compare the results of different experiments using t-test; compare the results of different experiments using ANOVA; understand the basic work flow of Graphpad and SPSS.	CO5

Evaluation Criteria

Components	Maximum Marks	
Mid Term Exam	20	
End Term Exam	20	
Day to Day	60	
Total	100	

PBL: Students can work in groups and give presentation/report on analysis of waste water from different sites and carry out statistical analysis of the same. Also, genomic or water sample data from database/net can be used for statistical analysis and presentation of the report for the same.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Keith Wilson, John Walker. —Principles and Techniques of Practical Biochemistryl. Cambridge University Press, 2000

2. R C Gupta and S Bhargav Practical Biochemistry 5th ed. (PB 2018) CBS Publishers and Distributers Pvt Ltd.

3. https://vlab.amrita.edu/?sub=2&brch=191&sim=341&cnt=1

4. https://vlab.amrita.edu/?sub=3&brch=70&sim=1099&cnt=1

5	https://vlab.amrita.edu/?sub=3&brch=63∼=154&cnt=1
6.	https://www.youtube.com/watch?v=7h0XrF1BleM
7	Design of experiments, principle and the expected outcome and related literature will be provided to the student

Environmental chemistry

Subject Code	20M31BT111	Semester: Odd	Semester: I	
			Session: 2022-2023 July to December	
Subject Name	Environmental cher	onmental chemistry		
Credits	3	Contact Hours	3	

Faculty	Coordinator(s)	Dr. Ekta Bhatt
Teacher(s) (Alphabetically)		Dr. Ekta Bhatt, Dr Ankisha Vijay

COUL	RSE OUTCOMES	COGNITIVE LEVELS	
CO.1	Explain various aspects of chemical and biochemical principles of environmental processes	Understanding Level Level II	
CO.2	Identify types of toxic substances and analyze their toxicological impact	Applying Level Level III	
CO.3	Apply concepts in organic and inorganic substances to processes involved in addressing environmental problems	Applying Level Level III	
CO.4	Analyze degradation products of hazardous substances, their environmental fate and associated risks	Analyzing Level Level IV	

Module	Subtitle of the Module	Topics in the module	No. of Lectures
No.			for the module

1.	Concept and scope of Environmental Chemistry	Definition and explanation for various terms and segments of the environment; Principles and cyclic pathways in the environment.	5
2.	Chemistry of Air, water, soil and waste water	Chemical composition of air and air pollutants; Sources; Sinks; Classification and effects of air pollutants on living and non-living things. Chemistry of water, Chemistry of soil, Industrial waste	8
3.	Chemistry of Organic and Inorganic chemicals in the Environment	Organic chemicals in the environment; Aliphatic/aromatic hydrocarbons. Soaps, surfactants, Pesticides, Polymers, drugs, dyes, oils, grease. Inorganic chemicals in the environment; Inorganic gaseous pollutants; Particulate matter; Trace level toxic metals; Inorganic pesticides & fertilizers, acids, alkalis, salts, complexes.	8
4.	Environmental monitoring and sample analysis	Sampling of air and water pollutants; Monitoring techniques and methodology, pH, Dissolved Oxygen (DO); Chemical oxygen demand (COD); Biological Oxygen Demand (BOD); Speculation of metals, monitoring & analysis of CO, NO2, CO2, SO2, Pesticide residue; Phenols and petrochemicals.	5
5.	Instruments used in chemical analysis of environmental samples	UV-Visible spectrophotometer; High performance liquid chromatography (HPLC); Gas chromatography (GC); Electro analytical methods; NMR and Gas chromatography and Mass Spectrometry (GC-MS).	8
6.	Chemistry of degraded hazardous substances	Introduction to hazardous waste; Degradation products of trade waste; Degradation of agro based chemicals; Solid waste management and environment; Destruction of hazardous	6

		substances: acid halides and anhydrides, alkali metals.	
7.	Toxic chemicals in the environment	Atmospheric toxicants; Toxic heavy metals; Pesticides and pesticide residues; Solvents and other organic chemicals; Petroleum and other related compounds; Carcinogens; Assessment of toxicity; Assessment of environmental risks; Chemistry of toxic chemical and hazardous substances in the environment.	4
	44		

Evaluation Cr	iteria				
Components	Maximum Marks				
T1	20				
T2	20				
End Semester	Examination 35				
TA	25				
Total	100				
the detection o	Project Based learning: The students at the end of the course can learn various analytical techniques for the detection of environmental pollutants. The students at the end of the course will learn the sampling of soil and water pollutants, monitoring techniques and methodology, and report making.				
	d Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text ace Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Kenneth Wark, Cecil F. Warner, Wayne T. Davis, Air pollution origin and its control work, 3rd Edition, Prentice Hall.				
2.	Environmental chemistry, B. K. Sharma.				
3.	Mahajan, S.P., Pollution Control in Process Industries, Tata McGraw-Hill, 1985.				
4.	Y. Mido& M. Satake, Chemicals in the environment, Discovery Publishing House, 2003				
5.	C.S. Rao, Pollution Control Engineering, John Wiley & Sons Inc.				
6.	S. M. Khopkar, Environmental pollution analysis, 1st Edition, Wiley Eastern, 1993.				

Biostatistics and Its applications

Course Code	15B1NBT832	Semester: Odd	d	Semester: I	
				Session: 2022-2023 July to December	
Course Name	Biostatistics and Its applications				
Credits	3		Contact I	Hours	3
Faculty (Names)	Coordinator(s) Dr. Shalini M		ni		
	Teacher(s)				

Faculty (Names)	Coordinator(s)	Dr. Shalini Mani
	Teacher(s) (Alphabetically)	Dr. Shalini Mani

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Application and use of Biostatistics as a science, scope.	1
2.	Study design in various fields of research general principles of study design and its implications for valid inference		1
3.	Sampling theory	Sampling scheme, simple/ systematic/ stratified/ cluster sampling, Sources of data collection	2
4.	Data presentation	Graphical, tabular, Mathematical, finding the central tendency, measure of variations	3
5.	Overview of different statistical methods used in the field of biological sciences.	Hypothesis testing, T-test, Chi square test, ANOVA, Sign Test, Wilcoxon Signed Rank Test, Wilcoxon Rank Sum Test, odds ratio, Binomial/normal/Poisson distribution of probabilities, determination of power of study and sample size calculation, regression analysis, correlation analysis,	13
6.	Analysis of data source	Assess data sources and data quality for the purpose of selecting appropriate data for specific research questions	3

7.	Selection of statistical methods	Identifying the appropriate statistical methods to be applied in a given research setting, applying the selected methods and analysis.	4
8.	Application of Biostatistical analysis.	Designing various studies of medical/ health/ Microbial/Agricultural/Genetics/Pharamaceutical science related studies. Data analysis using different methods. Result interpretation	7
9.	Case studies	Based on various research studies and systematic reviews.	4
10.	SPSS, Stats at the bench	Introduction to SPSS, Entering data in SPSS editor. Solving the compatibility issues with different types of files. SPSS and working with descriptive statistics.	4
	Total number of Lectures 42		

Evaluation Criteria

Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
TA	25
Total	100

Project Based learning: Students will learn to represent the data of various fields using various statistical methods. Students will also be able to select the appropriate statistical tool for analysis of different data set and interpret the outcome of any study.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
 Marcello Pagano, KinberleeGauvreau, Principle of Biostatistics.
 Stephen W Looney, Biostatistical methods, Humana Press
 Alan J Cann, Maths from Scratch for Biologist, John Willey and Sons Limited Press.
 M Bremer, R W Doerge, Statistics at the Bench, Cold Spring harbor Lab Press.
 B K Mahajan, Methods in Biostatistics, VII edition, Jaypee Bothers Medical Publishers, 2010.

Microbial Genetics & Molecular Biology

Course Code	19M21BT115	Semester: Odd		Semester Session:	2022-2023July to December
Course Name	Microbial Genetics & Molecular Biology				
Credits	3		Contact Hours		3

Faculty (Names)	Coordinator(s)	Dr. Sonam Chawla
	Teacher(s) (Alphabetically)	Dr. Sonam Chawla, Dr. Vibha Gupta

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	The nature of Genetic material	Discovery of DNA and experimental evidence, The structure of DNA and RNA; Melting of DNA, Superhelicity, Genome architecture, Chromatin arrangement, nucleosome formation, C value paradox, central dogma	02
2.	DNA replication and repair	DNA replication mechanism, enzymes involved and models of DNA replication, DNA methylation, inhibitors of DNA replication, DNA damage and repair: Molecular basis of spontaneous and induced mutations, types of mutation, Ames test, DNA repair pathways excision, mismatch, photoreactivation, Double Strand Break Repair	06
3.	DNA transcription	Transcription machinery - various transcription enzymes and cofactors, initiation, elongation and termination, enhancer sequences and control of	07

Compon	nents	Maximum Marks	
Evaluati	ion Criteria	JL	
	- II	Total number of Lectures	42
10.	Technological advances	Recombination as a molecular biology tool, Genetically modified organisms (GMOs) and applications	03
9.	Linkage and gene Mapping	Recombination (homo and heterologous), linkage symbolism, single and double cross overs, linkage maps, genetic analysis	03
8.	Viral genome & Methods of gene transfer in Viruses	Introduction to viral genetics, viral life cycles and phage replication, Transduction - Generalized and specialized transduction; gene mapping by specialized transduction	03
7.	Genetic control mechanism in prokaryotes	Operons, lac system, trp system for negative & positive gene regulation, lambda phage, complex operons	04
6.	Plasmids & Movable genetic elements	Plasmid types, detection, replication, partitioning, copynumber control, properties of some known plasmids, Extrachromosomal inheritance	04
5.	Methods of gene transfer in Bacteria	Transformation - natural transformation systems, mechanism, chemical-mediated and electrotransformation; Conjugation - nature of donor strains and compatibility, interrupted mating and temporal mapping, F plasmid, Hfr transfer, horizontal gene transfer	04
4.	DNA translation	The genetic code and protein structure, Mechanisms of translation - initiation complex, ribosomes and tRNA, factors, elongation and termination, <i>in vitro</i> translation systems, polycistronic/monocistronic synthesis, inhibitors of translation, stringent response in bacteria, Post-translational processes: Protein modification, folding, chaperones, transportation; protein degradation	06
		transcription, Structure and function of RNA polymerase, Post-transcriptional processes: RNA processing, Capping and polyadenylation, rRNA and tRNA processing, RNA Editing; RNAi and miRNAs, Antisense RNA	

T1	20	
T2	20	
End Semester Examination	35	
TA	25	
Total	100	

Project based Learning: Students were asked to select any disease that is a result of disturbance at cellular level and present their research findings/understanding covering pathophysiological mechanisms, clinical and economic consequences of the disease to the class. The class was also asked to come prepared on the topic so as to contribute during discussions/ brain-storming for alternative solutions to currently accepted clinical approaches to the disease. This real-world example of concepts developed during the lectures reinforced their knowledge in the genetics and molecular biology areas.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Genes IX by Benjamin Lewin, Jones and Bartlett Publishers, Sudbury, Massachusetts, 2007.			
2.	Molecular Biology of the Gene by J.D. Watson, T.A. Baker, S.P. Bell, A. Gann, M. Levin, R. Losick, 6th edition, Benjamin Cummings, San Francisco, USA, 2007.			
3.	Molecular Biology of the Cell by B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, 5th edition, Garland Science, New York and London, 2007.			
4.	Lehninger Principles of Biochemistry Seventh Edition – David L. Nelson; Michael M. Cox, 2017			
5.	An Introduction to Genetic Analysis by Suzuki DT, Griffiths AJF, Miller JH and Lewontin RC, WH freeman and Company, New York			

Presentation and Communication Skills

Course Code	19M21HS111	Semester: Odd		Semester: 1- 2022-2023	
				Month:	July-Dec 2022
Course Name	Presentation and Con	nmunication Ski	lls		
Credits	2		Contact I	Iours	2 (2-0-0)

Faculty (Names)	Coordinator(s)	Dr. Ankita Das
	Teacher(s) (Alphabetically)	Dr. Ankita Das

COURSI	COGNITIVE LEVELS		
C101.1	Develop an understanding and appreciate the basics aspects of communication	Understand(C2)	
C101.2	01.2 Assess the communication challenges of a diverse, global marketplace		
C101.3	Create & compose formal reports	Create (C6)	
C101.4	Evaluate the effectiveness of business etiquettes and presentation skills	Evaluate (C5)	
C101.5	Apply the acquired skills in delivering effective presentations		

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Communication Process, Grammar, and Vocabulary	 Communication: Definition, Model, Channel, Goals Process of Communication: Linear Concept, 	

		Shannon-Weaver Model, the Two-Way Process Communication Traits: Communication Apprehension, Style, Argumentativeness and Verbal Aggressiveness	
2.	Intercultural Communication	 Grammar: denotative and connotative words, subject-verb agreement Techniques of Vocabulary Building Recognizing cultural diverse world Developing Cultural Intelligence: High-ContextCultures and Low-Context Cultures Time as a cultural factor: Monochronic and Polychronic Time Challenges of Intercultural Communication 	6
3.	Business Etiquettes, and Presentation Skills	 Developing Cultural for Adapting. Ekman's classification of communicative movements Face Facts, Positive Gestures, Negative Gestures, Lateral Gestures Preparing and Delivering a Presentation Using Audio-Visual Aids: Presentation Support Sample Presentations 	6
4.	Communication for Conflict Management	 Negotiation, Mediation, and Conciliation Stages in the Negotiation Process Strategies of Conciliation Solving Deadlocks Reaching an Agreement 	5
5.	Technical Communication	 Characteristics of a Report Types of Report 5 W's and 1 H of a Report Structure, Format, Parts of a Report Referencing, and Documentation 	4
			28
	ntion Criteria	Maximum Marks	
(Preser	erm Examination ntation) emester Examination	30 40 30 (Assignment/Participation) 100	

Project Based Learning: Students will be given a project which would require them to work in groups of 5-6 members, identify a TEDTalk and analyse its significance/relevance to the course. While the task of identifying the talk would help them revisit the entire course, analyzing and underlining its significance would help them attain an in depth understanding of the chosen topic. The most important learning however would be to appreciate and understand the importance of team work.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	C.L.Bovee, J.V.Thill, Business Communication Today, 14th Ed, Global Edition Pearson Education, 2018.			
2.	R.C. Sharma and Krishna Mohan, Business Correspondence and Report Writing, Mc Graw Hill Education, 2016			
3.	Meenakshi Raman and Sangeeta Sharma, Technical Communication: Principles and Practice, Oxford University Press, 2015.			
4.	Anna Koneru, Professional Communication, Mc Graw Hill Education Pvt Ltd., 2017			
5.	Murli Krishna, Communication Skills for Engineers, Pearson, 2014			
6	Menu Dudeja, Communication Skills for Professionals, Satya Prakashan, 2017.			
7	Barun K. Mitra, Personality Development and Soft Skills, Oxford University Press, 2012			