JAYPEE INSTITUTE OF INFORMATION AND TECHNOLOGY

M.Sc. Microbiology

Semester I

MICROBIAL PHYSIOLOGY AND DIVERSITY

Course Code	19M21BT111	Semester: Oo	ld	Semest Session	eer: I a: 2022-2023 December
Course Name	Microbial physiology and diversity				
Credits	4		Contact	Hours	3-1- 0

Facult	Coordinator(s)	Dr. Susinjan Bhattacharya
y (Name s)	Teacher(s) (Alphabetically)	Dr. Susinjan Bhattacharya

COURSE	OUTCOMES	COGNITIVE LEVELS
C110.1	Classify the Diversity amongst archae, eubacteria	Understanding level (Level 2)
	and other microorganisms	
C110.2	Demonstrate ecological diversity, habitat	Understanding level (Level 2)
	interaction and microbial relationship.	
C110.3	Identify microbial nutritional, growth	Applying level (Level 3)
	requirements and associated physiological	
	mechanisms.	
C110.4	Analyze the different modes of metabolism in	Analyzing level (Level 4)
	microorganisms.	

Modu le No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1	Microbial taxonomy and evolution of diversity	Phylogenetic and genotypic classification, Classic and molecular characteristics, Phylogenetic trees	2
2	The Archae (Extremophile s and their diversity)	Introduction to Archaeal Taxonomy and Metabolism, Phylum Crenarchaeota: Habitat and energy metabolism, cold dwelling microbes (artic and antartic regions), hyperthermophiles. Phylum Euryarchaeota: extremely halophilicarchea, taxonomy and physiology of halophilicarchea. Methanogens – diversity and physiology. thermoplasmat, Hyperthermophilic euryarcheota: Thermococcales and Methanopyrus	4

3.	Gram negative and positive eubacteria	Diversity, characteristic features and significance : Spirochaetes - aerobic / microaerophilic motile, helical / vibriod - non motile gram negative curved bacteria - gram negative and positive rod and cocci - gram negative straight, curved & helical rods - sulfur reducing bacteria - - rickettisias and chlamydias – mycoplasmas - endosymbionts.	5
		Mycobacteria – Nocardioformis. Anoxygenic phototrophic bacteria – oxygenic photosynthetic bacteria – aerobic chemolithotrophic bacteria – budding and appendaged bacteria – sheathed bacteria – non photosynthetic bacteria - Myxobacteria – archeobacteria.	
4 •	Diversity of other microorganis m s	Distribution, importance, structure and characteristics of the fungal divisions, slime molds, the algal divisions, protozoans, general properties of viruses, their structures and classification, bacteriophages	7
5.	Microbial Diversity of various habitats	Microorganisms in nature ecosystem, Ecological groups of Microorganisms, Microbial population interactions, Human- Microbe Interactions, The soil habitat, Water as a Microbial Habitat, Microflora of air, Microflora of foodstuff	5
6	Microbial nutrition and growth	Nutritional requirements of Microorganisms- Autotrophs, Heterotrophs, Chemotrophs, Copiotrophs and Oligotrophs. Transport Mechanisms - Diffusion- Facilitated Diffusion, Active transport- Group translocation. Different phases of growth - Growth curve - Generation time - Factors influencing microbial growth - Temperature, pH, Pressure, Salt concentration, Nutrients - synchronous growth and continuous cultivation. Diauxic growth, Sporulation - Endospore formation in bacteria. Chemotherapeutic agents as growth inhibitors	5
7.	Bacterial photosynthesi s	Photosynthetic microorganisms, photosynthetic pigments, and generation of reducing power by cyclic and non-cyclic photophosphorylation, electron transport chain in photosynthetic bacteria. Carbon dioxide fixation pathways.	5

8.	Bacterial Respiratio n	Bacterial aerobic respiration, components of electron transport chain, free energy changes and electron transport, oxidative phosphorylation and theories of ATP formation, inhibition of electron transport chain. Electron transport chain in some heterotrophic and chemolithotrophic bacteria. Bacterial anaerobic respiration: Introduction. Nitrate, carbonate and sulfate as electron acceptors. Electron transport chains in some anaerobic bacteria. Catalase, super oxide dismutase, mechanism of oxygen toxicity.	5
9	Bacterial Chemolithotr o phy	Physiological groups of chemolithotrophs, ammonia oxidation by members of Genus Nitroso group, nitrite oxidation by Nitro group of genera.	4
		Oxidation of molecular hydrogen by <i>Hydrogenomonas</i> species. Ferrous and sulfur/sulfide oxidation by <i>Thiobacillus</i> species.	
Total nun	nber of Lectures		4 2
Evaluatio	on Criteria		
Compone	ents	Maximum Marks	
T1		20	
T2 End Some	stan Examination	20 25	
	ster Examination	55 25 (Presentation Assignments)	
Total		100	
Project Microbia	based learning: Th al Physiology and D	e students are assigned a project to learn latest methods used in viversity which are of Biotech industry relevance.	

Rec	commended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text
boo	ks, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Microbial Diversity by Colwd, D. 1999, Academic Press.
2.	Prescott L M, J P Harley and D A Klein (2005). Microbiology. Sixth edition, International
	edition, McGraw Hill.
3.	Advances in Applied Microbiology. Vol. 10. Edited by Wayne W. Umbreit and D.
	Pearlman. Academic Press.
4.	Brocks Biology of Microorganisms. 8th Edition. (International Edition - 1997) by
	Michael T. Madigan, John M. Martinko. Jack Parker. Prentice Hall Internation Inc.
5.	Microbial Ecology. Fundamentals and Applications by. Ronald M. Atlas and Richard
	Bartha. 2nd and 4th Edition. The Benjamin Cummins Publication Co. Inc.
6.	David white. The physiology and biochemistry of prokaryotes. Oxford university press. 4th
	edition (2011).

BIOSTATISTICS AND APPLICATION

Course Code	15B1NBT832	Semester: Odd	Seme	ster: I
		(specify	Sessio	on: 2022-2023
		Odd/Even)	July to	December
Course Name	Biostatistics and It	ts applications		
Credits	4		Contact Hours	4

Facult	Coordinator(s)	Dr Shalini Mani
y (Name s)	Teacher(s) (Alphabetically)	Dr Shalini Mani

COURSE OUTCOMES		COGNITIV E LEVELS
C430-	Explain the various statistical methods to design a biological studies	Understandin
3.1	and data representation.	g (Level 2)
C430-	Apply different statistical methods and approaches to study the	Apply (Level 3)
3.2	significance of a study.	
C430-	Examine the relationship between different parameters of a study.	Analyze
3.3		(Level 4)
C430-	Choose appropriate statistical methods, tools and resources including	Evaluate
3.4	prediction, validation and evaluation of the biological studies.	(Level 5)

Modu le No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Application and use of Biostatistics as a science, scope.	1
2.	Study design in various fields of research	general principles of study design and its implications for valid inference	1
3.	Sampling theory	Sampling scheme, simple/ systematic/ stratified/ cluster sampling, Sources of data collection	2
4.	Data presentation	Graphical, tabular, Mathematical, finding the central tendency, measure of variations	3
5.	Overview of different statistical methods used in the field of biological sciences.	Hypothesis testing, T-test, Chi square test, ANOVA, Sign Test, Wilcoxon Signed Rank Test, Wilcoxon Rank Sum Test, odds ratio, Binomial/normal/Poisson distribution of probabilities, determination of power of study and sample size calculation, regression analysis, correlation analysis,	1 2
6.	Analysis of data source	Assess data sources and data quality for the purpose of selecting appropriate data for specific research questions	4

7	Solaction of	Identifying the environmists statistical methods to	4
/.	statistical	identifying the appropriate statistical methods to	4
	statistical	be applied in a given research setting, applying the	
	methods	selected methods and analysis.	
•	Application	Designing various studies of medical/ health/	7
	of	Microbial/Agricultural/Genetics/Pharamaceutical	
	Biostatistical	science related studies.	
	analysis.	Data analysis using different methods	
		Result interpretation	
9.	Case studies	Based on various research studies and systematic	4
		reviews.	
10.	SPSS, Stats at	Introduction to SPSS, Entering data in SPSS	4
	the bench	editor. Solving the compatibility issues with	
		different types of files SPSS and working with	
		locaristics statistics	
		descriptive statistics.	
Total n	umber of Lectures		42
Evaluat	tion Criteria	·	
Compo	nents	Maximum Marks	
T1		20	
T2		20	
End Ser	nester Examination	35	
TA		25 (assignment, class test, quiz)	
Total		100	
D • 41			•
Project	Based learning: Studer	its will learn to represent the data of various fields using va	arious
statistica	i methods. Students will	also be able to select the appropriate statistical tool for analy	SIS OF
aifferent	data set and interpret th	e outcome of any study.	

R (T	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1	Marcello Pagano, Kinberlee Gauvreau, Principle of Biostatistics.			
2	Stephen W Looney, Biostatistical methods, Humana Press			
3	Alan J Cann, Maths from Scratch for Biologist, John Willey and Sons Limited Press.			
4	M Bremer, R W Doerge, Statistics at the Bench, Cold Spring harbor Lab Press.			
5	B K Mahajan, Methods in Biostatistics, VII edition, Jaypee Bothers Medical Publishers, 2010.			

MICROBIAL GENETICS & MOLECULAR BIOLOGY

Course Code	19M21BT115	Semester: Odd	Semester: I	
			Session : 2022-2023	
			July to December	
Course Name	Microbial Genetics & Molecular Biology			
Credits	ts 3-1-0- 4		Contact Hours	4

Facult	Coordinator(s)	Dr. Sonam Chawla
y (Name s)	Teacher(s) (Alphabetically)	 Dr. Sonam Chawla Dr. Vibha Gupta

COURSE O	COGNITIV E LEVELS	
CO112.1	Explain fundamental principles of molecular biology and technological advances in the field	Understandin g Level
		(C2)
CO112.2	Apply knowledge of microbial genome architecture and	Apply
	ge	Level (C3)
	ne regulation	
CO112.3	Analyse various methods of gene transfer and extrachromosomal	Analysis Level
	inheritance	(C4)
CO112.4	Interpret different aspects of DNA mutations, DNA repair, Linkage &	Understandin
	Mapping	g Level
		(C2)

Modu le No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	The nature of Genetic material	Discovery of DNA and experimental evidence, The structure of DNA and RNA; Melting of DNA, Superhelicity, Genome architecture, Chromatin arrangement, nucleosome formation, C value paradox, central dogma	02
2.	DNA replication and repair	DNA replication mechanism, enzymes involved and models of DNA replication, DNA methylation, inhibitors of DNA replication, DNA damage and repair: Molecular basis of spontaneous and induced mutations, types of mutation, Ames test, DNA repair pathways - excision, mismatch, photoreactivation, Double Strand Break Repair	06
3.	DNA transcription	Transcription machinery - various transcription enzymes and cofactors, initiation, elongation and termination, enhancer sequences and control of transcription, Structure and function of RNA polymerase, Post-transcriptional processes: RNA processing, Capping and polyadenylation, rRNA and tRNA processing, RNA Editing; RNAi and miRNAs, Antisense RNA	07
4.	DNA	The genetic code and protein structure, Mechanisms of	06

	translation Mathods of	translation - initiation complex, ribosomes and tRNA, factors, elongation and termination, <i>in vitro</i> translation systems, polycistronic/monocistronic synthesis, inhibitors of translation, stringent response in bacteria, Post- translational processes: Protein modification, folding, chaperones, transportation; protein degradation	04
	gene transfer in Bacteria	mechanism, chemical-mediated and electro- transformation; Conjugation - nature of donor strains and compatibility, interrupted mating and temporal mapping, F plasmid, Hfr transfer, horizontal gene transfer	04
6	Plasmids & Movable genetic elements	Plasmid types, detection, replication, partitioning, copy-number control, properties of some known plasmids, Extrachromosomal inheritance	04
7	Genetic control mechanism in prokaryotes	Operons, lac system, trp system for negative & positive gene regulation, lambda phage, complex operons	04
8.	Viral genome & Methods of gene transfer in Viruses	Introduction to viral genetics, viral life cycles and phage replication, Transduction - Generalized and specialized transduction; gene mapping by specialized transduction	03
9.	Linkage and gene Mapping	Recombination (homo and heterologous), linkage symbolism, single and double cross overs, linkage maps, genetic analysis	03
1 0	Technologic al advances	Recombination as a molecular biology tool, Genetically modified organisms (GMOs) and applications	03
Total nu	mber of Lectures		42
Evaluation	n Criteria		
Compone	nts	Maximum Marks	
11 T2		20 20	
End Seme	ster Examination	35	
TA		25	
Total		100	

Project based Learning: Students were asked to select any disease that is a result of disturbance at cellular level and present their research findings/understanding covering pathophysiological mechanisms, clinical and economic consequences of the disease to the class. The class was also asked to come prepared on the topic so as to contribute during discussions/ brain-storming for alternative solutions to currently accepted clinical approaches to the disease. This real-world example of concepts developed during the lectures reinforced their knowledge in the genetics and molecular biology areas.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc.
(Tex	t books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
1	Lewin's Genes XII by Jocelyn E. Krebs, Elliott S. Goldstein and Stephen T. Kilpatrick Jones
1.	and Bartlett Publishers, Sudbury, Massachusetts, 2018.
2.	Molecular Biology of the Gene by J.D. Watson, T.A. Baker, S.P. Bell, A. Gann, M. Levin, R.
	Losick, 7th edition, Benjamin Cummings, San Francisco, USA, 2013.

3.	Molecular Biology of the Cell by B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, 6th edition, Garland Science, New York and London, 2017.
4.	Lehninger Principles of Biochemistry Seventh Edition – David L. Nelson; Michael M. Cox, 2017
5.	An Introduction to Genetic Analysis by Suzuki DT, Griffiths AJF, Miller JH and Lewontin RC, WH freeman and Company, New York

BIOMOLECULES

Course Code	19M21BT113	Semester: Odd		Semester: I Session: 2022-2023 July-December		
Course Name	Biomolecules					
Credits	4		Contact	Hours	4	

Faculty (Names)	Coordinator(s)	Dr. Priyadarshini
	Teacher(s) (Alphabetically	Dr. Priyadarshini, Prof. Reema Gabrani
)	

COUR	SE OUTCOMES	COGNITIVE LEVELS
C113. 1	Explain the biomolecule's structure and function	Understand Level(C2)
C113. 2	Analyze bioenergetics and metabolic pathways for physiological and Pathological conditions	Analyze Level (C4)
C113. 3	Apply the concepts of enzymes, hormones and signaling	Applying Level (C3)
C113. 4	Illustrate the basics in genomics and proteomics	Understand Level(C2)

Modu le No.	Title of the Modu le	Topics in the module	No. of Lectur es for the modu le
1.	Carbohydrate s and bioenergetics	Chemical composition and bonding; Carbohydrates: Classification, basic chemical structure; General reactions of the functional groups; Physiological significance; Metabolism of carbohydrate: Glycolysis, TCA, gluconeogenesis, PPP, ATP role; Respiratory chain and Oxidative phosphorylation	11
2.	Lipids	Classification, structure and function of major lipid sub classes; chylomicrons, LDL, HDL, and VLDL; Pathological changes in lipid levels. Formation of micelles, monolayers, bilayer, liposomes; biosynthesis of fatty acids and ketogenesis	7

3.	Proteins	Amino acids: Classification, Properties, Protein Structure: primary, secondary, tertiary and quaternary structure; separation techniques; biosynthesis of non-essential amino acids and catabolism of protein and amino acids in born errors of metabolism. Enzymes: kinetics, functions	7	
4.	Nucleotides	Nucleic acid structure, Nucleotides and nucleosides; metabolism of purines and pyrimidines	6	
5.	Hormones	Characteristics of hormones/signalling molecules; function, signal transduction	6	
6.	Introduction to Genomics and proteomics	DNA sequence analysis methods; gene disease association; Introduction and scope of proteomics	5	
Total num	ber of Lectures		4 2	
Evaluatio	n Criteria			
Compone	nts	Maximum Marks		
T1		20		
T2		20		
End Semester		35		
Examination TA		25 (Presentation, Assignments) PBL: 7 marks		
Total 100				
PBL: Stude commercial of biomole	ents will choose any lly used as a therape cules is required for	biomolecule/ hormone linked to a particular disease. How i autic molecule or as a target to manage the disease? The under Biotechnology companies including patent firms.	s it erstanding	

Re	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text			
bo	books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1	JM Berg, L Stryer, J Tymoczko, G Gatto, "Biochemistry", 9thEd.SanFrancisco,2019WHFreeman			
•				
2	Ljsbrand Kramer, "Signaltransduction", AcademicPress, 2015Harper			
•				
3.	VW Rodwell, D Bender, K M Botham, P J Kennelly, P A Weil, "Harper's Illustrated Biochemistry", 31 st Ed. McGraw-Hill Lange 2018			
4	Jeremy M. Berg,"Biochemistry"8 th Ed.W.H.Freeman2015			
5	D L Nelson and M M Cox, "Lehninger PrinciplesofBiochemistry",7thEd.WHFreeman2017			
•				

MICROBIOLOGY LAB- I

Course Code	19M25BT111	Semester: Odd		Semester: I Session: 2022-2023July to December	
Course Name	Microbiology Lab-I	Lab-I			
Credits	4	Contact Hours		Hours	8

Faculty (Names)	Coordinator(s)	Dr. Garima Mathur
	Teacher(s) (Alphabetically)	Dr. Garima Mathur,Dr. Shalini Maini, Prof. Indira P. Sarethy, Dr. Shazia Haider

COURSE OUTCOMES Students will be able to		COGNITIV E LEVELS
CO1	Understand various culture media, their applications and methods of sterilization	Level II (Understand)
CO2	Apply standard microbiological techniques for isolation, culturing and enumeration of microorganisms	Level III (Apply)
CO3	Make use of different methods for microbial identification and characterization	Level III (Apply)
CO4 Analyze quantitation techniques of biomolecules		Level IV (Analyze)

Modu le No.	Title of the Module	List of Experiments
1.	Isolation of microorganisms from different sources	Media preparation & sterilization – Bacteria; Media preparation & sterilization – fungi; Preparation of agar plants and slants; Culturing microorganisms on agar media by streaking / stab / point inoculation; Serial dilution of microbial culture; Estimation of microbial growth by colony counting
2.	Characterization of Microorganisms	Microbial diversity – characterization of bacteria & fungi; IMVIC Test; Computational tool for strain identification
3.	Microbial Growth	Effect of substrate / culture conditions on microbial growth; To study diauxic growth in bacteria; Data presentation & Analysis
4.	Analytical Technique s	Preparation of buffers; quantitative determination of proteins, carbohydrates, nucleic acids
Project Be	sod I corning: Students are a	equainted with various microbiological skills that are commonly

Project Based Learning: Students are acquainted with various microbiological skills that are commonly used in research and development. Students will also be familiarized with knowledge of computational tools, molecular biology techniques and data analysis, that may play a pivotal role in developing skillset that may be used in various biotechnological and allied sectors

S.No	List of Experiment	We
		ek
	Introduction & GLP	Week 1 – Week 3
1	Isolation of microorganisms from different sources	
(a)	Media preparation & sterilization – Bacteria	
(b)	Media preparation & sterilization – fungi	
(c)	Preparation of agar plants and slants	
(d)	Culturing microorganisms on agar media by streaking / stab / point inoculation	
(e)	Serial dilution of microbial culture	
(f)	Estimation of microbial growth by colony counting	
2	Characterization of Microorganisms	Week 4- Week 6
(a)	Microbial diversity – characterization of bacteria & fungi	
(b)	IMVIC Test	
(c)	Computational tool for strain identification	
3	Microbial Growth	Week 7 – Week 9
(a)	Effect of substrate / culture conditions on microbial growth	
(b)	To study diauxic growth in bacteria	
(c)	Data presentation & Analysis	
4	Molecular Biology	Week 10 – Week 12
(a)	Isolation of DNA from bacteria	
(b)	Isolation of bacteria from fungi	
(c)	Agarose Gel Electrophoresis	

PRESENTATION AND COMMUNICATION SKILLS

Course Code	19M21HS111	Semester: Odd	Semester: I Session: 2022-2023 July-Dec
Course Name Presentation and Communication Ski		lls	
Credits	2	Contact Hours	2-0-0

Faculty (Names)	Coordinator(s)	Dr. Ankita Das
	Teacher(s) (Alphabeticall y)	Dr. Ankita Das

COU	IRSE OUTCOMES	COGNITIVE LEVELS
C101 .1	Develop an in-depth understanding and appreciate the subtle aspects of English as a communication tool.	Understand (C2)
C101 .2	Assess the communication challenges of a diverse, global marketplace	Analyze (C4)
C101 .3	Create & Compose different forms of Professional writing	Create (C6)
C101 .4	Evaluate the effectiveness of sample Presentations	Evaluate (C5)
C101 .5	Apply the acquired skills in delivering effective presentations	Apply (C3)

Modu le No.	Title of the Module	Topics in the Module	No. of Lectur es for the module
1.	Communicatio n Process, Grammar, and Vocabulary	 Communication: Definition, Model, Channel, Goals Process of Communication: <i>Linear Concept,</i> <i>Shannon Weaver Model, the Two-Way Process</i> Communication Traits: <i>Communication</i> <i>Apprehension, Style, Argumentativeness</i> and 	5

		 Verbal Aggressiveness Grammar: denotative and connotative words, subject-verb agreement Techniques of Vocabulary Building 	
2.	Intercultural Communicati on	 Recognizing cultural diversity: variations in a diverse world Developing Cultural Intelligence: <i>High-Context Cultures</i> and <i>Low-Context Cultures</i> Time as a cultural factor: <i>Monochronic</i> and <i>Polychronic</i> Time Challenges of Intercultural Communication Developing Cultural Competency and Guidelines for adapting. 	5
3.	Business Etiquettes, and Presentati on Skills	 Ekman's classification of communicative movements Face Facts, Positive Gestures, Negative Gestures, Lateral Gestures Preparing and Delivering a Presentation Using Audio-Visual Aids: Presentation Support Sample Presentations: Steve Jobs, <i>Three Stories of my Life</i> (Stanford University Commencement Address, 2005) 2.Dr. Shashi Tharoor, <i>Britain does owe</i> <i>India reparations</i> (Oxford Union Debate) 	5
4.	Communicati on for Conflict Management	 Stages in the Negotiation Process Strategies of Conciliation Solving Deadlocks Reaching an Agreement 	5
5.	Communicati on for Employment	 Guidelines for writing a Resume, Types of Resumes Interviews: Purpose and Types. Interviews: Preparation, Process, Common Mistakes to Avoid. Group Discussion: Stages (Forming, Storming, Norming, Performing, Adjourning) Formal/Informal Group Dynamics 	5
6.	Technical Communicati on	 Characteristics of a Report Types of Report 5 W's and 1 H of a Report Structure, Format, Parts of a Report Referencing, and Documentation 	5
Total	number of Lectures		30

Project Based Learning: Students will be given a project which would require them to work in groups of 5-6 members, identify a TEDTalk and analyse its significance/relevance to the course. While the task of identifying the talk would help them revisit the entire course, analyzing and underlining its significance would help them attain an in depth understanding of the chosen topic. The most important learning however would be to appreciate and understand the importance of team work.

Evaluation Criteria Components Maximum Marks Mid Term Examination (Presentation) 30 End Semester Examination 40 TA 30(Assignment/ Viva) Total 100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)	
1	C.L.Bovee, J.V.Thill, Roshan Lal Raina, <i>Business Communication Today</i> , 13th Ed, Pearson Education, 2017.
2	R.C. Sharma and Krishna Mohan, <i>Business Correspondence and Report Writing</i> , Mc Graw Hill Education, 2016.
3	Meenakshi Raman and Sangeeta Sharma, <i>Technical Communication: Principles and Practice</i> , Oxford University Press, 2015.
4	Anna Koneru, Professional Communication, Mc Graw Hill Education Pvt Ltd., 2017.
5	Murli Krishna, Communication Skills for Engineers, Pearson, 2014.
6	Meenu Dudeja, Communication Skills for Professionals, Satya Prakashan, 2017.
7	Barun K. Mitra, Personality Development and Soft Skills, Oxford University Press, 2012.