Detailed Syllabus

Lecture-wise Breakup

Subject Code	17M11CS111	Semester (specify Odd/Even)	Semester Odd Session 2022-2023 Month from July 22 to December 22	
Subject Name	Data structure & Algorithms for Big Data			
Credits	3	Contact Hours	3(L)	

Faculty	Coordinator(s)	Indu Chawla
(Names)	Teacher(s) (Alphabetically)	Indu Chawla

COURSE OU	UTCOMES	COGNITIVE LEVELS
C110.1	Define basic concepts of Big Data and relating them to them with various Big Data technologies (e.g., Hadoop, Spark)	Remember Level (Level 1)
C110.2	Explain Hadoop cluster architecture and its components and Differentiate Hadoop Distributed File System (HDFS) from other storage techniques, e.g., NFS and UNIX file system	Understand Level (Level 2)
C110.3	Construct data structure and algorithms for HDFS and MapReduce and further applying them to different Big Data problems.	Apply Level (Level 6)
C110.4	Apply hashing on large scale multi-dimensional data sets using Locality Sensitive Hashing.	Apply Level (Level 3)
C110.5	Analyze and apply advance data structures and algorithms (e.g., B and B+ Tree, R and R+ Tree, Matrix multiplication) for solving big data problems	Analyze Level (Level 4)
C110.6	Evaluate Streaming Algorithms, Sublinear optimization, Machine Learning, Hadoop systems	Evaluate Level (Level 5)

S.N.	Subtitle of the Module	Topics in the module	No. of Lectures for the module	Remarks
1.	Introduction to Big	Motivation, Application, Domains for Big	2	
	Data	Data, Various tools and services	-	
2.	Basics of Hadoop	Introduction to hadoop. Introduction to		
		HDFS, Read and write operation, Fault	3	
		Tolerance-Failures and Recovery,:		
3.	MapReduce	Introduction to MapReduce, Mapreduce	2	
		Job scheduling	5	
4.	Basic data structures	Array: searching, sorting,	4	

	concepts	aggregation on BIG DATA		
5.	Basic Statistics	Various types of parametric and non- parametric test	2	
6.	Matrix Multiplication	Matrix Multiplication for BIG DATA	2	
7.	Concurrency Control	Concurrency-control mechanisms, Multithreading, Transactions, logging, ACID compliant, crash recovery	5	
7.	Graphs	Spanning Tree (Min/Max), Searching (BFS), Shortest Path etc.	6	
8.	Indexing strategies Trees	large Arrays, Hashing, AVL, B-tree, Tries, R and R+ Trees, Prefix Trees, Accumulo, Bigtable, bLSM, Cassandra, HBase,Hypertable, LevelDB are LSM trees, divide & conquer, mapreduce	6	
9.	Bloom filters	Bloom filters, HyperLogLog, Count–2 min sketch	4	
10	Applications (may use spark)	Streaming Algorithms, Sublinear optimization, Machine Learning Problems, Hadoop systems	2	
11	Mathematical Foundation	Sparse: Vector Spaces, Matrix algebra, LSI,SVD, PSD	3	
Total number of Lectures			42	
Evaluation Criteria				
Components T1 T2 End Semester Examination TA Total		Maximum Marks 20 20 35 25Attendance (10 Marks), Assignment/Qu 100	uiz/Mini-project	(15 Marks)

Project based learning: Students in group of 3 to 4 students are required to develop mini-project based on the concepts taught in this course. In mini-project, students need to create the distributed environment either using Hadoop framework or multithreading using OpenMP. Problem statements need to be formulated in various applications domains of big data, proposing the solution approach and implemented over the created distributed environment.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Journals: IEEE Transactions on Knowledge and Data Engineering, ACM Transactions on Intelligent Systems and

	Technology (TIST), ACM Transactions on Knowledge Discovery		
	from Data (TKDD)		
2.	2. Tier-1 Conferences: SIGKDD, ICDE - International Conference on Data Engineering, CIKM - International		
	Conference on Information and Knowledge Management, ICDM - IEEE International Conference on Data		
	Mining, SDM - SIAM International Conference on Data Mining, PKDD - Principles of Data Mining and		
	Knowledge Discovery, IEEE Big Data		
3.	https://journalofbigdata.springeropen.com/		
	https://www.springer.com/journal/41060		
4.	4. Book: Mahmoud Parsian, "Data Algorithms: Recipes for Scaling Up with Hadoop and Spark", O'Reilly Media		
5.	Probabilistic Data Structures and Algorithms in Big Data Applications by Andrii Gakhov		
6.	Algorithms and Data Structures for Massive Datasets by Dzejla Medjedovic, Emin Tahirovic, and Ines		
	Dedovic, MEAP began July 2020		

Detailed Syllabus Lecture-wise Breakup

Subject Code	17M11CS112	Semester (specify Semester: Odd Session 2022-2023	
		Odd/ Even): Odd Month from July to December	
Subject Name	Machine Learning and Data Mining		
Credits	3	Contact Hours	3

Faculty (Names)	Coordinator(s)	Anita Sahoo
	Teacher(s)	Anita Sahoo

COURS	E OUTCOMES	COGNITIVE LEVELS
C112.1	Differentiate between Classification, Clustering and Association Rules techniques.	Level 4 (Analyze)
C112.2	Understand working of classification techniques, e.g., k-Nearest Neighbours, Naïve Bayes, ID3 Decision Trees, Support Vector Machine, Ensemble methods.	Level-2- (Understanding)
C112.3	Apply and compare different clustering techniques, e.g., k-means, k-mediods, etc.	Level-3 (Apply)
C112.4	Evaluate different dimensionality reduction techniques e.g. PCA, SVD, Factor Analysis, Linear Discriminant Analysis, etc., in big data scenarios.	Level-5 (Evaluate)
C112.5	Apply various Artificial Neural Network Models for classification and clustering	Level-3 (Apply)

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for
			the module
1	Introduction	Introduction to Machine Learning, Data Mining and Knowledge Discovery in Data Bases, Data Types	2
2	Classification	Introduction to classification, k-Nearest Neighbours, Naïve Bayes, Decision Trees, Advanced classification techniques	6
3	Regression	Linear Regression with One Variable, Linear Regression with Multiple Variables, Logistic Regression	4
4.	Clustering	Introduction, Different type of Clustering Methods, Partitioning Clustering Methods, Hierarchical Clustering Methods, k-means, k-medoids, density based clustering, cluster validation	8
5.	Association Rules	Support, Confidence, Lift, Conviction; Apriori algorithm, Eclat algorithm, FP-growth algorithm	4
6.	Dimensionality Reduction	Introduction, Subset Selection, PCA, SVD, Factor Analysis, Multidimensional Scaling, Linear Discriminant Analysis	6
7.	Artificial Neural Methods	Cost Function, Back propagation, Feed forward Network, Gradient Descent, Network training, Error Propagation, Application of Neural Networks, Introduction to quantum neural network	8
8.	Ensemble Methods	Ensemble methods of classification-Bagging, Boosting, and Random Forest	4
		Total number of Lectures	42

Eval	uation Criteria		
Com	ponents Ma	ximum	
Mar	ks T1	20	
T2		20	
End	Semester Examination	35	
ТА		25 (Attendance (10), Mini-project/Assignment (15))	
Tota	1	100	
Proj mini some langu	ect based learning: Each stud ng, classification and clustering e decision-making. The student lage. Project development will	ent in a group of 3-4 will have to develop a mini project based on association g approaches. The students can choose any real-world application that requires ts have to implement the mini-project using any open-source programming enhance the knowledge and employability of the students in IT sector.	
Reco Refe	ommended Reading material rence Books, Journals, Reports	Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, s, Websites etc.)	
1	Han, Jiawei, Jian Pei, and M Elsevier, 3rd edition ,2012	icheline Kamber. Data mining: concepts and techniques.	
2	Kimball R. and Ross M, The	Data Warehouse Toolkit", Wiley, 3rd edition,2013	
3	Pujari, Arun K, Data mining techniques, Universities press, 3rd edition, 2013		
4	Pang-Ning Tan, Michael Stei	nbach, Vipin Kumar, Introduction to Data Mining, second edition, 2019	
5	Soumen Chakrabarti, Mining Elsevier	the Web: Discovering knowledge from hypertext data", Morgan Kaufmann,	
6	Mitchell, Tom, and Machine	Learning McGraw-Hill. "Edition." (1997).	
7	Wittek, Peter. Quantum maci 2014.	hine learning: what quantum computing means to data mining. Academic Press,	
8	Anahory S. and Murray D, D	ata Warehousing in the Real World, Addison-Wesley	
9	Dunham, Margaret H. Data	mining: Introductory and advanced topics. Pearson Education India, 2006.	
10	Mattison R., Web Warehousing and Knowledge Management", Tata McGraw-Hill.		
11	David Hand, Heikki Mannila	and Padhraic Smyth ,Principles of Data Mining,PHI	
12	Transactions on Database S	vstems (ACM)	
13	IEEE Transactions on Knowledge & Data Engineering		
14	The VLDB Journal The International Journal on Very Large Data Bases		

Course Description with COs

	<u>]</u>	Detailed Syllabu	<u>s</u>
Subject Code	19M12CS111	Semester odd	Semester: First Session: 2022-2023
Subject Name	Web Intelligence		Month from July to December
Credits	3	Contact Hours	3
Faculty (Names)	Coordinator(s) Teacher(s) (Alphabetically)	1. Dr. Anuja A Dr. Anuja Arora	rora

Course Outcomes:

At the completion of the course, students will be able to,

CO#	CO Description	COGNITIVE
		LEVELS
C121.1	Outline the various web technologies, methods, and models	Understand
	used to design an intelligent web.	(Level-2)
C121.2	Make use of web caching strategies at varied level: user, web	Apply Level
	server, and gateway server.	(Level-3)
C121.3	Analyze and Model the users' browsing behavior on web.	Analyze (Level-
		4)
C121.4	Evaluate various Web content mining algorithms, Web language	Evaluate Level
	models and learning to rank models to handle complex Web.	(Level-5)
C121.5	Design and develop the computational intelligent web	Create Level
	algorithms to handle complex real problems	(Level-6)

Module No. Subtitle of the Module Topics in the module

No. of Lectures for the module

1.	Web Content Feature Engineering	Frequency Filter, POS Tag, Unigram, Ngram, Collocation, Levenstein Distance, KL- Divergence, T-Test.	4
2	Web Language Models	Vector Space Models: TF-IDF, SGRank, SGRank-IDF,	8

		Single Rank, Word-Word occurrence matrix;	
		Word Embedding with GloVe, Word2Vec, CBoW, Skip Gram Model	
		Probabilistic models: Bayes model, BM25 Ranking model;	
3	Web Content Searching	Link Based Search Algorithm, Power Iteration Method for ranking nodes on web, Handling Spider Traps and Dead ends, Topic Sensitive Page Ranking.	4
4	Ranking Algorithm and performance measures	Point wise ranking, Pair wise Ranking, Listwise ranking,	4
		Metrics for Learning to rank : CG, DCG, NDCG, P@K, MAP, AP	
5	Web caching Algorithm	LRV, FIFO, LRU, Random, OPT, Size based, PSS	4
6	Matrix Factorization Techniques	Matrixdecomposition,Eigenvaluedecomposition,Non-Negativematrixfactorization,Singularvaluedecomposition,objectivefunctionsUVdecomposition,CURdecomposition </td <td>5</td>	5
7	Tensor Factorization	Multidimensional Matrix, Matricization, Tucker decomposition, High Order SVD, clustHOSVD, other methods	4
10	Collective Intelligence	Crowd Sourcing, Local-Global Behavioral Interactions, Self-Organizing Systems, Self-Adaptive Evolutionary Systems, Information Extraction from Deep Web, Decision Making Under Uncertainty	4
11	Graph Structure in the Web	Social Network Analysis, Google Patent Algorithm, News Feed Algorithm, Edge Rank Algorithm, Web of Things, Situational Awareness	5
		Total number of Lectures	40

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1

Web Intelligence Journal: https://www.iospress.nl/journal/web-intelligence-and-agent-systems/

- 2.Soumen Chakrabarti,. Mining the Web: Discovering knowledge from hypertext data. Morgan
Kaufmann, 2003.
- 3. Scime, Anthony, ed. Web mining: applications and techniques. IGI Global, 2005.
- 4. Hitzler, Pascal, Markus Krotzsch, and Sebastian Rudolph. Foundations of semantic web technologies. CRC Press, 2011.
- 5. Sponder, M., & Khan, G. F. (2017). Advanced Web Analytics and Web Intelligence. In Digital Analytics for Marketing (pp. 115-144). Routledge.
- 6. Symeonidis, P., & Zioupos, A. (2016). Matrix and Tensor Factorization Techniques for Recommender Systems (Vol. 1). New York: Springer International Publishing.
- 7. Aggarwal Charu.C, Social Network Data Analytics, Springer Science+Business Media, LLC 2011
- 8. Velásquez, J. D. (2010). Advanced techniques in web intelligence (Vol. 311). L. C. Jain (Ed.). Springer.
- 9. Zhong, N., Liu, J., & Yao, Y. (2003). Web intelligence. Springer Science & Business Media.
- 10 Borgatti Stephon. P., Everett Martin G and Johnson Jeffery C , Analyzing Social Networks, Sage Publications, 2013

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code		19M12CS113	3	Semester OddSemester I sem(specify Odd/Even)Session 2022Month from Ju		m (M.Tech 2 -2023 ul'22 to D	CSE)/DD ec'22		
Course Na	me	ADVANCED) WIRE	LESS NETWOR	RKS				
Credits			3		Contact H	Hours		3-0	0-0
Faculty (N	ames)	Coordinato	r(s)	Dr K. RAJALA	AKSHMI				
		Teacher(s) (Alphabetica	lly)	Dr K. RAJALA	AKSHMI				
COURSE	OUTCO	OMES						COGNIT	TIVE LEVELS
CO1	Unders and me	stand the funda	mentals hnologi	of Wireless Tra es.	nsmission 7	Fechnolog	gy,	Unde	rstand (C2)
CO2	Netwo networ	rk design, simu ks such as WL	ilate and AN, Blu	l analysis of vari uetooth.	ious protoco	ols in wire	eless	Cro	eate (C6)
CO3	Analys	e the GSM &	UMTS 1	Felecommunicat	ion System	<mark>S</mark>		<mark>Ana</mark>	llyze (C4)
CO4	Discus	s the features of	of 4G an	d 5G networks				Ap	oply (C3)
CO5	Demor	strate the featu	ures of S	SDN framework				Ap	oply (C3)
Module No.	Title of the ModuleTop		Topics	ics in the Module		No. of Lectures for the module			
1.	Introduction AI co		Applic commu model	pplications of Wireless Networks, history of wireless ommunication, open research topics, simplified reference odel			eless eference	4	
2.	WirelessFrTransmissionansp		Freque antenn spread	quency for radio transmission, regulation, signals, ennas, signal propagation, multiplexing, modulation, ead spectrum, cellular systems		, signals, odulation,	6		
3.	Medium Access ControlSpecialized MAC, Hidder far terminals, SDMA comparison of S/T/F/CDM			lden and ex MA, FDM DMA	posed ter IA, TD	minals MA,	, near and CDMA.,	4	
4.	Wireless LANInfra-red vs. radio transmission, Infrastructure and ad-hoc network, IEEE802.11: System architecture, protocol architecture, Physical Layer, Medium access control layer, MAC management, 802.11b, 802.11a, Bluetooth.				6				
5	WiMA	X	IEEE8 Functio Infrastr	02.16 and WiM onalities – Mot ructure	IAX – Sec bile WiMA	urity – A X - 802.	dvanc 16e –	ed 802.16 Network	3
6.	Teleco System	mmunication as	GSM: Interfa Securit 2000: archite Netwo	Mobile Servi ce, Protocols, I ty, Data Service UMTS releases cture, UMTS rk, Handover	ices, Syste Localization es, GPRS,I and standa radio in	em Arch n and cal EDGE, U ardization terface,	itectur ling, 1 MTS , UMT UTRA	e, Radio Handover, and IMT- TS system N, Core	5

7.	LTE, 4G, 5G	LTE – Network Architecture and Interfaces – Air Interface and Radio Networks – Mobility Management - Interconnection with UMTS and GSM – LTE Advanced (3GPPP Release 10) - Physical Layer and Multiple Access - OFDMA - Channel Modelling for 4G – Introduction to 5G - 3GPP 5G-NR Standards, usage scenarios, 5G Architecture, Next Gen Core (NGC) Network Function , 5G Non Standalone Options (NSA), 5G Advance Networks, mmWave Systems	8		
8.	Software Defined Networks	Introduction – Centralized and Distributed Control and Data Planes – Open Flow – SDN Controllers – General Concepts – VLANs – NVGRE – Network Overlays – Types – Virtualization – Data Plane – I/O – Design of SDN Framework	6		
	Total number of Lectures 42				
Evaluation	Evaluation Criteria				
Componen	Components Maximum Marks				
T1 T2	T1 20				
End Semes	ter Examination	20			
TA		25 (Attendance = 10, Ouizzes /Assignments /Mini-Project	t = 15)		
Total		100	<u> </u>		
Students form group of size 2-3 members. Each group will identify several wireless network issues in distributed applications in various thrust areas like healthcare, industrial, education, smart city, logistics, environment, governance and etc. Once problem has been identified, the group will analyze the problem and synthesize wireless network based solutions to the identified problem. Each group will apply different wireless network technology and concepts such as WIFI, Bluetooth, WiMAX, 4G/5G, and SDN. This approach will enhance skills of each student and increase the understanding of incorporating wireless networks in recent distributed applications. Moreover, candidate will gain the enough knowledge to provide the wireless network based solutions to enhance the scalability, mobility and coverage issues of any organization/company. After this course, a student will able to undertake any work in this area in the industry or research.					

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

	Reference Books
1.	Jochen Schiller, "Mobile Communications", second edition, Addison-Wesley, 2004.
2.	Martin Sauter, From GSM to LTE, An Introduction to Mobile Networks and Mobile Broadband, Wiley, 2014.
3.	Savo G Glisic, Advanced Wireless Networks – 4G Technologies, John Wiley & Sons, 2007.
4.	Jonathan Rodriguez, Fundamentals of 5G Mobile Networks, Wiley, 2015.
5	Paul Goransson, Chuck Black, —Software Defined Networks: A Comprehensive Approach, Morgan Kauffman, 2014.
6.	Naveen Chilamkurti, SheraliZeadally, HakimaChaouchi, Next-Generation Wireless Technologiesl, Springer, 2013.
7.	IEEE, ACM Transactions, Journals and Conference papers on "Advance Wireless Network"

Detailed Syllabus

Subject Code	21M71CS112		Semester Even	Semester M.Tech I
				Session 2022- 2023
				Month from July - December
Subject Name	Advances in AI			
Credits	3		Contact Hours	3
Faculty	Coordinator(s)	Dr. Ankit Vidyarthi		
(Names)	Teacher(s) (Alphabetically)	Dr.	r. Ankit Vidyarthi	

S.No.	Description	Cognitive Level (Blooms Taxonomy)
C161.1	Understand the characteristics & significance of AI	Understanding Level (Level III)
C161 2	C161.2 Analyze several AI/ML techniques to yield and process information ¹	
0101.2	from open real-world data sources	(Level II)
C161 3	Apply the concept of Machine Learning for industrial applications	Applying Level
0101.5	Apply the concept of Machine Learning for industrial applications	(Level IV)
C161.4	Evaluate the use of the Machine Learning algorithms towards pattern	Evaluating Level
010111	mining	(Level V)
C161.5	Design algorithmic frameworks for solving time series data patterns	Creating Level
0101.5	Design algoritanile mane works for sorving time series data patients	(Level VI)

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1	Introduction	Introduction of AI, introduction of Machine Learning, Significance of AI and ML, Application areas, model pipelining	3
2	Mathematical Formulation	Matrices and its operations, Overview of probability theory, Bayes networks, Independece, I-Maps, Undirected graphical models, Bayesian and Markov networks	5
3	Models and Learning	Learning, Types of learning, Local models; Exact inference, Clique trees, Belief propagation, Tree construction, applications solving problems	6

6		
8		
8		
6		
42		
20		
$\frac{33}{15}$		
(10) (10) (10) (10) (10) (10) (10) (10)		
=		

Project based learning: Each student in a group of 2-3 will extract data from real-world domains using data from standard repositories that are globally recognized. For conducting application-based research, the students are encouraged to analyze social/political/financial/disease related data and generate underlying networked structure based on the algorithms of AI.

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Michael Negnevitsky, Artificial Intelligence, Person Publication, Third Edition, 2011				
2.	Toshinori Munakata, Fundamentals of the New Artificial Intelligence, Springer, Second Edition, 2008				
3.	Deisenroth, Marc Peter, A. Aldo Faisal, and Cheng Soon Ong. <i>Mathematics for machine learning</i> . Cambridge University Press, 2020				
4.	Valliappa Lakshmanan, Martin Görner, Ryan Gillard - Practical Machine Learning for Computer Vision_ End-to-End Machine Learning for Images, O'Reilly Media, Inc., 2021				
5.	Laurence Moroney - AI and Machine Learning for On-Device Development_ A Programmer's Guide, O'Reilly Media, Inc., 2021				

Detailed Syllabus

Course Code	17M15CS112	Semester: Jul December 202	Semester: I Session 2022 -2023 Month from: July				
Course Name	Machine Learning and Data Mining Lab						
Credits	1		Contact H	Iours			2

Faculty (Names)	Coordinator(s)	Dr.Amit Mishra
	Teacher(s) (Alphabetically)	Dr.Amit Mishra

COURSE	OUTCOMES	COGNITIVE LEVELS
C173.1	Identify the programming languages for machine learning and data mining	Understanding (Level-2)
C173.2	Use Python to apply and evaluate Linear regression, Logistic regression, kNN, k Means, SVM and ID3 on different datasets	Apply Level-3)
C173.3	Implement apiori algorithm and Eclat algorithm in R	Apply (Level-3)
C173.4	Apply Neural networks to model object detection, video tagging, music genre detection etc.	Apply (Level-3)
C173.5	Evaluate different machine learning models on the basis of their performances	Evaluate (Level- 5)

Mod ule No.	Title of the Module	List of Experiments	СО
1.	Python for data sampling and Visualization	a. To write a program for writing the pixel values of an image b. Write programs for Data Sampling (given dataset).	1
2.	Python for text processing	Use IPython (a web version provided by Jupyter nootbook) to write a word count program. Your program should read a text document (download from https://raw.githubusercontent.com/python/cpython/master/	1
3.	Classification-1	Implement kNN algorithm using Python. Consider iris dataset and report the accuracy of classification. [May take help from : <u>https://machinelearningmastery.com/tutorial-to-implement-k-</u> <u>nearest-neighbors-in-python-from-scratch/</u>]	2

4.	Clustering	Clustering: Implement kMeans Algorithm	2
5.	Classification-2	Classify the wine dataset of UCI Repository by ID3.	2
6.	Data Mining-1	Implement Logistic Regression on a sample dataset	2
7.	Data Mining-2	Implement apriori and Eclat algorithm for association rule mining in R	3
8.	SVM-1	Apply Support Vector Machine on the dataset of question the Parkinson dataset given in <u>https://archive.ics.uci.edu/ml/datasets/Parkinson+Dataset+with+rep</u> <u>licated+acoustic+features+</u> .	2
9.	Comparison of Classification algorithms	Compare the classification of Iris dataset by different algorithms namely kNN, ID3 and SVM. Report accuracy and other performance measures.Implement neural networks for Classification of <i>four</i> character patterns	5
10.	ANN	Apply Multi Layer Percepron for supervised learning (problem statement to be given individually)	4
11.	BPN	Use back propagation for supervised learning . For the data based on 1990 census data from California.Evaluate the accuracy of a model's predictions using RMSE.	4
12.	CNN	Implement CNN using TensorFlow for classifying MNIST images	4
Evalua Compo Lab Te Lab Te PBL/M Attenda	ation Criteria onents st1 st2 liniproject /Assign ance	Maximum Marks 20 20 15 100	

PBL- Students in a group of 4-5 will be designing an efficient solution to a given problem / case-studies using appropriate Machine Learning and Data mining Technique studies in the course.

Reco Refe	pmmended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, rence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Jiawei Han, Micheline Kamber, Data Mining, Morgan Kaufmann Publishers, Elsevier, 2005
2.	Kimball R. and Ross M, The Data Warehouse Toolkit", Wiley
3.	Pujari, Arun K, Data mining and statistical analysis using SQL, Universities press
4.	Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining
5.	Soumen Chakrabarti, Mining the Web: Discovering knowledge from hypertext data", Morgan Kaufmann, Elsevier

6.	Margaret H. Dunham, Data Mining: Introductory and Advanced Topics, Prentice Hall,2003
7.	Mattison R., Web Warehousing and Knowledge Management", Tata McGraw-Hill.
8.	David Hand, Heikki Mannila and Padhraic Smyth ,Principles of Data Mining,PHI
9.	Transactions on Database Systems (ACM)
10.	IEEE Transactions on Knowledge & Data Engineering
11.	The VLDB Journal The International Journal on Very Large Data Bases

Detailed Syllabus Lab-wise Breakup NOTE: All the entries (...) must be in Times New Roman 11.

Course Code		17M15CS113	Semester Odd 2022		Semester Session 20 Month from July to Dec, 2		Session 2022-23 uly to Dec, 2022		
Course Na	me	Cloud Technolog	y Lab						
Credits 1				Contact H	Iours		2 Hours	2 Hours	
Faculty (Na	ames)	Coordinator(s) Dr Prakash Kumar							
		Teacher(s) (Alphabetically)	Dr. Prakash Ku	umar					
COURSE (OUTCO	OMES					COGNITIVE LEV	VELS	
C171.1	De De	monstrate the architec ployment models etc.	eture and layers	of Cloud S	Service M	odels,	Understand (level 2)		
C171.2	Un ale	derstand the working	of CloudSim an	d run diffe	rent scheo	luling	Apply (level 3)		
C171.3	Ana on	alyze various Schedulir Virtual Machines, Conta	ng algorithms and ainers and Dockers	compare the	ir perform	ances	Analyze (level 4)		
C171.4	Ap	Apply and evaluate the energy aware algorithms for using DVFS Evaluate (level 5) techniques.							
Module No. Title of the Module		List of Experiments				CO			
1.			Create Virtual Machines (VMs) on CloudSim.				CO1		
2.	Clo	oudSim installations and Use	Allocate different Cloudlets to VMs and Data Centers using different scheduling algorithms				CO2		
3.	Scl	Analyze various reduling algorithms	Create different Data Centers and allocate the VMs to them analyze the outcomes				Ms to them and	CO3	
4.	in	different scenarios on cloudsim	Assign the cloudlets and change the schedulir various scenarios Creating and Running appli Containers and Dockers in Cloud Environmen			ling techniques for CO3 plications using tents.			
5.	А	Evaluate Energy ware Simulations using DVFS	Apply and evaluate energy aware algorithms using DVFSCCtechniques.CC				CO4		
Evaluation	Criter	ia						<u></u>	
ComponentsMaximum MarksLab Test# 120Lab Test# 220D2D work60 (D2D: 30 marks, PBL: 20 marks, Attendance:			ance: 1	10 marks)					
Total		100							
Project Based Learning: A group of maximum 2 students are to be formed. Each group shall choose a Cloud based project. The project shall be designed and/or modeled based on any Cloud Platform like AWS, Google cloud, Eucalyptus, CloudSim, iFogSim or any simulation tools. The project shall function and run as per the objective of the project. Live demonstration of the project shall be shown during their presentation. The project evaluation shall be done based on the quality, innovation, relevance and creativity involved.									

Reco Refe	ommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, rence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	K. Hwang, Geoffrey C. Fox, Jack J. Dongarra, "Distributed and Cloud Computing- From Parallel Processing to the Internet of Things", Morgan Kauffman Publishers, Elsevier.
2	George Reese, "Cloud Application Architectures: Building Applications and Infrastructure in the Cloud" O'REILLY publication.
3	"Virtualization Overview", White paper, VM Ware.
4.	Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De Rose, and Rajkumar Buyya, CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms, Software: Practice and Experience, Volume 41, Number 1, Pages: 23-50, ISSN: 0038-0644, Wiley Press, New York, USA, January 2011.
5.	Tom Guérout, Thierry Monteil, Georges Da Costa, Rodrigo Neves Calheiros, Rajkumar Buyya, Mihai Alexandru, Energy-aware Simulation with DVFS, Simulation Modelling Practice and Theory, Volume 39, No. 1, Pages: 76-91, ISSN: 1569-190X, Elsevier Science, Amsterdam, The Netherlands, November 2013.
6.	Rajkumar Buyya, Rajiv Ranjan and Rodrigo N. Calheiros, Modeling and Simulation of Scalable Cloud Computing Environments and the CloudSim Toolkit: Challenges and Opportunities, Proceedings of the 7th High Performance Computing and Simulation Conference (HPCS 2009, ISBN: 978-1-4244-4907-1, IEEE Press, New York, USA), Leipzig, Germany, June 21 - 24, 2009 Keynote Paper.
7.	https://www.docker.com
m.	

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Co	Course Code 19M12CS11		12	Semester Odd (specify Odd/Even)		Session 2022 -2023 Month from July to Dec			
Course Na	me	Metaheuris	tics in Mc	delling and Opti	imization				
Credits			3		Contact H	Hours		3-0)-0
Faculty (N	(ames)	Coordinat	or(s)	Dr. Parul Agar	wal				
		Teacher(s) (Alphabeti	cally)	Dr. Parul Agar	wal				
COURSE At the com	OUTCO pletion of	DMES of the course,	Students	will be able to				COGNIT	IVE LEVELS
C131.1	Interpr and it'	et and explai s application	n the condin a diver	cepts of Metaheurse range of appl	iristics base ications.	ed optimiz	ation	Understan	d Level (C2)
C131.2	Model to solv	single soluti e a given opt	ion and p imization	opulation based problem.	Metaheuri	stic algor	ithms	Apply Lev	vel (C3)
C131.3	Model proble	Metaheurist ms.	ic algorith	nms to solve Mu	ılti-objectiv	e optimiz	ation	Apply Lev	vel (C3)
C131.4	Model proble	hybrid Meta m.	aheuristic	algorithms to s	olve a give	<mark>n optimiz</mark>	ation	Apply Lev	vel (C3)
C131.5	Explai Metah	n algorithms euristics.	and arc	hitectures for p	arallel imp	lementatio	on of	Understan	d Level (C2)
Module No.	Title of the ModuleTo			in the Module					No. of Lectures for the module
1.	Introdu	uction	Optimiz Metaheu	ation Models, A aristics?, Method	pproximate ls and Appl	Algorith	ms, W	hen to use	4
2.	Fundar Metaho	mentals of euristics	Represe Paramet	ntation, Objecti er Tuning; Perfo	ve Functio rmance An	ns; Cons alysis.	traint	Handling;	5
3.	Single Based Metah	-Solution euristics	Basic C Tabu S Neighbo	oncepts, Fitness earch; Iterated rhood Search; Sn	Landscape and Guide noothing Me	e Analysis d Local ethods; No	s; Loca search sisy Me	al Search; Variable thods	6
4.	Popula Metaho Metho	Ilation-BasedBasicConcepts;EvolutionaryAlgorithms,SwarmaheuristicsIntelligence,Stochasticdiffusionsearch,Socialcognitive6hodsoptimization6					6		
5.	Metaheuristics for Multi-objectiveBasic Concepts;Multi-objective ContinuousContinuous and CombinatorialAnd Problems, Multi-criteriaContinuous DecisionAnd Making;3OptimizationDesign Issues3				3				
6.	FitnessScalar approach, Criterion-Based Methods; Dominance-Based Approaches; Indicator based Approaches; Diversity Preservation; Performance Evaluation7Strategiesand Evaluation7Multi-objective Optimization7				7				
7.	HybridDesign and Implementation Issues;MathematicalMetaheuristicsProgramming Approaches;Classical Hybrid Approaches;7				7				

		Hybrid Metaheuristics with Machine Learning and Data Mining; Hybrid Metaheuristics for Multi-objective Optimization	
8.	Parallel Metaheuristics	Parallel Design and Implementation of Metaheuristics; Parallel Metaheuristics for Multi-objective Optimization	4
		Total number of Lectures	42
Evaluation	ı Criteria		
Componen	nts	Maximum Marks	
T1		20	
T2		20	
End Semes	ter Examination	35	
ТА		25 (Attendance(10), Assignments/Mini-project/Tutorials/Quiz	z (15)
Total		100	

Project based learning: Each group of 3-4 students will be assigned an optimization problem at the beginning. They are required to apply the metaheuristic methods they study on the given problem.

Reco Refe	Demmended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, rence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Metaheuristics: From Design to Implementation by El-Ghazali Talbi, Wiley, June 2009.
2.	Sean Luke, 2013, Essentials of Metaheuristics, Lulu, second edition, available athttp://cs.gmu.edu/ <sean book="" metaheuristics.<="" th=""></sean>
3.	Gandomi, Amir; Yang, Xin-She; Talatahari, Siamak; Alavi, Amir; "Metaheuristic Algorithms in Modeling and Optimization", Metaheuristic Applications in Structures and Infrastructures, Dec 2013.
4.	Kalyanmoy Deb; "Multi-Objective Optimization Using Evolutionary Algorithms:An Introduction"; https://www.egr.msu.edu/~kdeb/papers/k2011003.pdf
5.	Kalyanmoy Deb; "Single and Multi-Objective Optimization Using Evolutionary Algorithms"; https://www.iitk.ac.in/kangal/papers/2004002.pdf
6.	Paulo Cortez, Modern Optimization with R, Use R! series, Springer, September 2014, ISBN 978-3-319-08262-2.

Research Methodology and Intellectual Property Rights (18M11GE111)

Basic idea of research, types of research, methods to write report and research papers, use of Mendeley in report writing, problem identification and solving, research ethics, patents, intellectual property rights, plagiarism regulation 2018, steps in research process and common methodologies to attempt solution to research paper, basic statistical concepts, handling of raw data, Some common probability distributions, hypothesis testing, parametric and non-parametric data, introduction to regression analysis.

Course Co	de	18M11GE111	Sei	mester Odd	Semester I Session 2022-23 Month from Aug - Dec 2022			
Course Name Research Methodol			dolc	ogy and Intellectua	al Prope	rty Rights		
Credits		2		Contact Hours	5		2-0-0	
Faculty		Coordinator(s)		Dr. Shikha Pande	У			
(Names)		Teacher(s) (Alphabetically)	Dr. Shikha Pande	У			
COURSE	OUT	COMES:					COGNIT	TIVE LEVELS
After pursu	ing t	he above mention	ed c	ourse, the student	s will be	e able to:		
C101.1	explain the basic concepts and types of research Understan					nding Level (C2)		
C101.2	define a research problem, its formulation, methodologies and analyze research related informationAnalyzing Lev					ing Level (C4)		
C101.3	exp rela	lain research ethic ted to their innova	research ethics, understand IPR, patents and their filing their innovative works.				nding Level (C2)	
C101.4	exp test	lain and analyze t of hypothesis in t	yze the statistical data and apply the relevant as in their research problems Analyzin				ing Level (C4)	
Module No.	Tit	le of the Module	J	Topics in the Module			No. of Lectures for the module	
1.	Res	earch	V r	What is research? Types of research. What is not research? How to read a Journal paper?3				3
2.	Rep	port writing	How to write report? Use of Mendeley in report 4 writing. How to write a research paper? Problem identification and solving.					
3.	Eth Res met	ics, IPR and earch hodologies	F r r a	Research ethics, patents, intellectual property rights, plagiarism regulation 2018. Steps in research process and common methodologies to attempt solution to research paper.8				8

Course Description

4.	Basics of statistics and probability distributions	Basic statistical concepts. Handling of raw data, Some common probability distributions.	7			
5.	Test of hypothesis and regression analysis	Hypothesis testing. Parametric and non- parametric data, Introduction to regression analysis.	8			
		Total number of Lectures	30			
(Course delivery method:	open ended discussion, guided self-study, lectures)				
Evaluation	n Criteria					
Componer	nts	Maximum Marks				
Mid Term	Examination	30				
End Semes	ter Examination	40				
Assignmen	ts	30 (Quiz, Assignments)				
Total		100				
Project ba	sed learning: Students	divided in small groups will be assigned topics re-	lated to patents,			
intellectual	property rights, plagiar	ism, and statistics. Students can write a report/review	v paper and find			
its similarity through plagiarism software available online. Students may collect data and test the						
relevant hypothesis. They may study some data set and do its regression analysis. The main purpose is to						
expose students to a wider arena of applicable knowledge of the subject.						
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text						
books, Ref	erence Books, Journals,	Reports, Websites etc. in the IEEE format)	× ×			
Stuart Melville and Wayne Goddard , Research Methodology: An Introduction for Science & Engineering Students, Kenwyn, South Africa: Juta & Co. Ltd., 1996.						
Kothari, C.R., Research Methodology: Methods and Techniques, New Age International, New Delhi, 2009.						
Kumar, Ranjit, Research Methodology: A Step by Step Guide for Beginners, 2nd Edition, Sage Publications Ltd., 2005.						
Ramappa, T., Intellectual Property Rights Under WTO, S. Chand, New Delhi, 2008.						
Wayne G Africa: Juta	Wayne Goddard and Stuart Melville, Research Methodology: An Introduction, Kenwyn, South Africa: Juta & Co, 2001.					

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	21M71CS111	Semester: ODD		Semester	: I Session: 2022 -2023
				Month fr	om: Aug 2022-Dec 2022
Course Name	ython				
Credits 3-0-0			Contact	Hours	3

Faculty	Coordinator(s)	Dr. Adwitiya Sinha
(Names)	Teacher(s) (Alphabetically)	Dr. Adwitiya Sinha

COURSE	COURSE OUTCOMES		
C183.1	Understand the data analysis techniques	Understand (Level 2)	
C183.2	Understand the concepts behind the descriptive analytics	Understand (Level 2)	
C183.3	Apply predictive analytics of data	Apply (Level 3)	
C183.4	Analyze data using Python programming	Analyze (Level 4)	
C183.5	Evaluate strategies for data science with measures of correlation, association, and learning using Python modules and packages	Evaluate (Level 5)	

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module		
1.	Introduction	Introduction to Data Science - Evolution of Analytics, analytic processes and tools, Analysis vs reporting - Modern data analytic tools. Statistical concepts: Sampling distributions, re-sampling, statistical inference, prediction error.	8		
2.	Predictive Analytics	Predictive Analytics - Regression, Decision Tree, Neural Networks. Dimensionality Reduction - Principal component analysis	9		
3.	Descriptive Analytics	Mining Frequent item-sets - Market based model - Association and Sequential Rule Mining - Clustering Techniques - Hierarchical - K- Means	9		
4.	Data Analysis Using Python	Introduction to Python, Python Application Programming Interfaces & Libraries, File handling, Data Types, Descriptive Statistics, Data Preprocessing, Dirty Data, Examining Single/Multiple Variables, Statistical Methods	10		
5.	Exploratory Data Analysis	Exploring univariate and multivariate data: Heat Map, Box and Whisker plot, Scatter plots with histograms, Bubble charts, Geo-plots	6		
	Total number of Lectures 42				

Evaluation Criteria	
Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
TA (Tutorials, regularity & Marco	Assignments) 25 (Assignments & Attendance)
	(Class Presence & Performance = 05
	Internal Assessment & Assignment in PBL mode = 20)
Total	100

Project based learning: Each student in a group of 2-3 will use Python to extract data from real-world domains using data streaming, web crawling, application programming interfaces (APIs), or from standard repositories that are globally recognized. The students will be encouraged to analyze social/political/financial/healthcare related data and perform data science using Python libraries and packages. Project work will focus on developing models to analyze the real-world data by performing statistical, probabilistic and exploratory analysis. The students will also explore learning techniques on variety of datasets and perform case studies using Python programming.

Reco	mmended Reading material: Text Books/ Reference Books
1.	Dietrich, David (2015). Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data. EMC Education Services, Wiley.
2.	Jaiwei Han, Micheline Kamber. (2006) Data Mining Concepts and Technique. Elsevier.
3.	Ross, Sheldon (2019). A First Course in Probability. 9 th Edition, Pearson.
4.	Michael Berthold, David J. Hand (2007). Intelligent Data Analysis, Springer.
5.	Michael Minelli, Michele Chambers, Ambiga Dhiraj. (2013). Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends", John Wiley & Sons.
6.	Bart Baesens. (2014) Analytics in a Big Data World: The Essential Guide to Data Science and its Applications", John Wiley & Sons.
7.	Min Chen, Shiwen Mao, Yin Zhang, Victor CM Leung. (2014), Big Data: Related Technologies, Challenges and Future Prospects, Springer.
8.	Zelle, J. (2016). Python Programming: An Introduction to Computer Science. Franklin, Beedle & Associates, Inc
9.	Jaworski, M. and Ziadé, T. (2019). Expert Python Programming: Become a master in Python by learning coding best practices and advanced programming concepts in Python 3.7. Packt Publishing Ltd.

Detailed Syllabus Lab-wise Breakup

			Lab-wise	е бгеакир				
Course Co	ode	17M15CS111	Semester: ODD		Semeste	er: I	Session 2022 - 2023	
			Μ		Month f	f rom J	uly to Dec 2022	
Course Name Advanced Algorithms Lab			s Lab	[
Credits		1		Contact H	Iours		2	
Faculty (N	ames)	Coordinator(s)	Manish Kumar	Thakur				
		Teacher(s) (Alphabetically)	Manish Kumar	Thakur				
COURSE	OUTCO	OMES					COGNITIVE LEV	/ELS
C170.1	Impler solving	nent algorithms and us g computing problems.	e appropriate ad	vanced data	structure	es for	Level 3: Apply	
	Design	algorithms using o	divide-and-cond	uer, greedv	and dyr	amic	Level 3: Apply	
C170.2	progra these s	mming strategies, and	further recite	algorithms	that en	nploy	Level 5: Evaluate	
	Illustra	ate the mathematical	foundation of 1	network flo	ws and	some	Level 2: Understand	d
C170.3 important flow algorithms.							Level 3: Apply	
C170 4	Impler	nent randomized algo	rithms to solve	<mark>e various p</mark>	oroblems,	and	Level 3: Apply	
C1/0.4	CI70.4 validate their correctness and complexity. Level 4: Analyze							
C170.5	C170.5 Understand P, NP, polynomial reduction, NP-hardness, and NP- Level 2: Understand					d		
	Comp	leteness.	orithm design	nnroachas	in a pro	hlam	Level 4: Analyze	
C170.6	specifi	c manner.	onunn uesign a	approaches		olem	Level 0. Cleate	
Module No.	Title	e of the Module		List of Experiments			СО	
1. Fundamentals of data structures and algorithmic problem solving			lata Searching nic Linked I dynamic t	Searching, Sorting, time complexity, Heaps, Arrays, Linked List, Trees, Fibonacci heaps, splay trees, dynamic trees.			CO1	
2.	2. Divide and Conquer Technique Solving Matrix multiplication problem and subset- sum problem using divide-and-conquer approach				CO2			
3.	Greedy AlgorithmsGreedy Approximation algorithms- Set Cover Problem, K Centers Problem, Fractional and 0/1 Knapsack, Coinage problem; Bin packing; Job scheduling, Graph coloring; and Text compression using Huffman coding and Shannon-Fanon coding.				CO2			
4.	Dyna Tech	amic Programm mique	ing Fundamer approach, Dynamic rectangle	Fundamentals of Dynamic programming-based solution approach, Printing Shortest Common Super sequence, Dynamic Programming on Trees, Maximum sum rectangle in a 2D matrix.				CO2
5.	Grap	h Algorithms	Solve and Shortest	Solve and analyze Graph problems, Algorithms. All Pair Shortest Problem, Subset-sum problem. Minimum				CO1, CO2

Spanning Trees (Prim's and Kruskal algorithms); Shortest Path using Dijkstra's algorithm, K-clique

max

One Way of Coping with NP-Hardness. Randomized

flow

and

min-cost

CO3

CO4,

problem, Graph Coloring problem.

-

flow/circulation, Edmonds-Karp algorithm

flows

Network

Flows in Network

Tractable and Non- Tractable

6.

7.

	Problems	Rounding. Vertex Cover and Travelling Salesman Problem.	CO5
8.	Mini-Project	Mini-Project	CO6
Evaluation (Criteria		
Components	S Maximum	Marks	
Lab Test# 1	20		
Lab Test# 2	20		
D2D work	60		
Total	100		

Project based learning: Students in group of 3 to 4 students are required to develop mini-project based on the concepts taught in this course like Greedy algorithms, dynamic programming, network flow, etc. The solution approach for the identified problem statements should include the usages of advanced data structures including string data structures. The problem statements may be a puzzle-based games, graph-based problems, string-based problems, etc. The developed mini project will enhance the algorithmic thinking and problem-solving approaches of students which are highly desirable to excel in software industries.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms, MIT Press, 4 th Edition, 2022
2.	Steven Skiena, The Algorithm Design Manual, Springer; 3 rd Edition, 2020
3.	Tim Roughgarden, Algorithms Illuminated: Part 1: The Basics, Sound like yourself Publishing, September 27, 2017
4.	Tim Roughgarden, Algorithms Illuminated: Part 2: Graph Algorithms and Data Structures, Sound like yourself Publishing, First Edition, 2018.
5.	Tim Roughgarden, Algorithms Illuminated: Part3: Greedy Algorithms and Dynamic Programming, Sound like yourself Publishing, First Edition, 2019.

Detailed Syllabus Lecture-wise Breakup

Subject Code	17M11CS112	Semester (specify	Semester: Odd Session 2022-2023	
		Odd/ Even): Odd	Month from July to December	
Subject Name	Machine Learning ar	nd Data Mining		
Credits	3	Contact Hours	3	

Faculty (Names)	Coordinator(s)	Anita Sahoo
	Teacher(s)	Anita Sahoo

COURS	E OUTCOMES	COGNITIVE LEVELS
C112.1	Differentiate between Classification, Clustering and Association Rules techniques.	Level 4 (Analyze)
C112.2	Understand working of classification techniques, e.g., k-Nearest Neighbours, Naïve Bayes, ID3 Decision Trees, Support Vector Machine, Ensemble methods.	Level-2- (Understanding)
C112.3	Apply and compare different clustering techniques, e.g., k-means, k-mediods, etc.	Level-3 (Apply)
C112.4	Evaluate different dimensionality reduction techniques e.g. PCA, SVD, Factor Analysis, Linear Discriminant Analysis, etc., in big data scenarios.	Level-5 (Evaluate)
C112.5	Apply various Artificial Neural Network Models for classification and clustering	Level-3 (Apply)

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for
			the module
1	Introduction	Introduction to Machine Learning, Data Mining and Knowledge Discovery in Data Bases, Data Types	2
2	Classification	Introduction to classification, k-Nearest Neighbours, Naïve Bayes, Decision Trees, Advanced classification techniques	6
3	Regression	Linear Regression with One Variable, Linear Regression with Multiple Variables, Logistic Regression	4
4.	Clustering	Introduction, Different type of Clustering Methods, Partitioning Clustering Methods, Hierarchical Clustering Methods, k-means, k-medoids, density based clustering, cluster validation	8
5.	Association Rules	Support, Confidence, Lift, Conviction; Apriori algorithm, Eclat algorithm, FP-growth algorithm	4
6.	Dimensionality Reduction	Introduction, Subset Selection, PCA, SVD, Factor Analysis, Multidimensional Scaling, Linear Discriminant Analysis	6
7.	Artificial Neural Methods	Cost Function, Back propagation, Feed forward Network, Gradient Descent, Network training, Error Propagation, Application of Neural Networks, Introduction to quantum neural network	8
8.	Ensemble Methods	Ensemble methods of classification-Bagging, Boosting, and Random Forest	4
		Total number of Lectures	42

Eval	uation Criteria				
Com	ponents Ma	ximum			
Mar	ks T1	20			
T2		20			
End	Semester Examination	35			
ТА		25 (Attendance (10), Mini-project/Assignment (15))			
Tota	1	100			
Proj mini some langu	ect based learning: Each stud ng, classification and clustering e decision-making. The student lage. Project development will	ent in a group of 3-4 will have to develop a mini project based on association g approaches. The students can choose any real-world application that requires ts have to implement the mini-project using any open-source programming enhance the knowledge and employability of the students in IT sector.			
Reco Refe	ommended Reading material rence Books, Journals, Reports	Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, s, Websites etc.)			
1	Han, Jiawei, Jian Pei, and M Elsevier, 3rd edition ,2012	icheline Kamber. Data mining: concepts and techniques.			
2	Kimball R. and Ross M ,The Data Warehouse Toolkit", Wiley, 3rd edition,2013				
3	Pujari, Arun K, Data mining techniques, Universities press, 3rd edition, 2013				
4	Pang-Ning Tan, Michael Stei	nbach, Vipin Kumar, Introduction to Data Mining, second edition, 2019			
5	Soumen Chakrabarti, Mining the Web: Discovering knowledge from hypertext data", Morgan Kaufmann, Elsevier				
6	Mitchell, Tom, and Machine	Learning McGraw-Hill. "Edition." (1997).			
7	Wittek, Peter. Quantum maci 2014.	hine learning: what quantum computing means to data mining. Academic Press,			
8	Anahory S. and Murray D, Data Warehousing in the Real World, Addison- Wesley				
9	Dunham, Margaret H. Data mining: Introductory and advanced topics. Pearson Education India, 2006.				
10	Mattison R., Web Warehousing and Knowledge Management", Tata McGraw-Hill.				
11	David Hand, Heikki Mannila	and Padhraic Smyth ,Principles of Data Mining,PHI			
12	Transactions on Database S	vstems (ACM)			
13	IEEE Transactions on Know	eledge & Data Engineering			
14	The VLDB Journal The Inter	national Journal on Very Large Data Bases			

Course Description with COs

		Detailed Syllabu	<u>s</u>
Subject Code	19M12CS111	Semester odd	Semester: First Session: 2022-2023
Subject Name	Web Intelligence		Month from July to December
Credits	3	Contact Hours	3
Faculty (Names)	Coordinator(s) Teacher(s) (Alphabetically)	1. Dr. Anuja A Dr. Anuja Arora	rora

Course Outcomes:

At the completion of the course, students will be able to,

CO#	CO Description	COGNITIVE
		LEVELS
C121.1	Outline the various web technologies, methods, and models	Understand
	used to design an intelligent web.	(Level-2)
C121.2	Make use of web caching strategies at varied level: user, web	Apply Level
	server, and gateway server.	(Level-3)
C121.3	Analyze and Model the users' browsing behavior on web.	Analyze (Level-
		4)
C121.4	Evaluate various Web content mining algorithms, Web language	Evaluate Level
	models and learning to rank models to handle complex Web.	(Level-5)
C121.5	Design and develop the computational intelligent web	Create Level
	algorithms to handle complex real problems	(Level-6)

Module No. Subtitle of the Module Topics in the module

No. of Lectures for the module

1.	Web Content Feature Engineering	Frequency Filter, POS Tag, Unigram, Ngram, Collocation, Levenstein Distance, KL- Divergence, T-Test.	4
2	Web Language Models	Vector Space Models: TF-IDF, SGRank, SGRank-IDF,	8

		Single Rank, Word-Word occurrence matrix;	
		Word Embedding with GloVe, Word2Vec, CBoW, Skip Gram Model	
		Probabilistic models: Bayes model, BM25 Ranking model;	
3	Web Content Searching	Link Based Search Algorithm, Power Iteration Method for ranking nodes on web, Handling Spider Traps and Dead ends, Topic Sensitive Page Ranking.	4
4	Ranking Algorithm and performance measures	Point wise ranking, Pair wise Ranking, Listwise ranking,	4
		Metrics for Learning to rank : CG, DCG, NDCG, P@K, MAP, AP	
5	Web caching Algorithm	LRV, FIFO, LRU, Random, OPT, Size based, PSS	4
6	Matrix Factorization Techniques	Matrixdecomposition,Eigenvaluedecomposition,Non-Negativematrixfactorization,Singularvaluedecomposition,objectivefunctionsUVdecomposition,CURdecomposition </td <td>5</td>	5
7	Tensor Factorization	Multidimensional Matrix, Matricization, Tucker decomposition, High Order SVD, clustHOSVD, other methods	4
10	Collective Intelligence	Crowd Sourcing, Local-Global Behavioral Interactions, Self-Organizing Systems, Self-Adaptive Evolutionary Systems, Information Extraction from Deep Web, Decision Making Under Uncertainty	4
11	Graph Structure in the Web	Social Network Analysis, Google Patent Algorithm, News Feed Algorithm, Edge Rank Algorithm, Web of Things, Situational Awareness	5
		Total number of Lectures	40

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1

Web Intelligence Journal: https://www.iospress.nl/journal/web-intelligence-and-agent-systems/

- 2.Soumen Chakrabarti,. Mining the Web: Discovering knowledge from hypertext data. Morgan
Kaufmann, 2003.
- 3. Scime, Anthony, ed. Web mining: applications and techniques. IGI Global, 2005.
- 4. Hitzler, Pascal, Markus Krotzsch, and Sebastian Rudolph. Foundations of semantic web technologies. CRC Press, 2011.
- 5. Sponder, M., & Khan, G. F. (2017). Advanced Web Analytics and Web Intelligence. In Digital Analytics for Marketing (pp. 115-144). Routledge.
- 6. Symeonidis, P., & Zioupos, A. (2016). Matrix and Tensor Factorization Techniques for Recommender Systems (Vol. 1). New York: Springer International Publishing.
- 7. Aggarwal Charu.C, Social Network Data Analytics, Springer Science+Business Media, LLC 2011
- 8. Velásquez, J. D. (2010). Advanced techniques in web intelligence (Vol. 311). L. C. Jain (Ed.). Springer.
- 9. Zhong, N., Liu, J., & Yao, Y. (2003). Web intelligence. Springer Science & Business Media.
- 10 Borgatti Stephon. P., Everett Martin G and Johnson Jeffery C , Analyzing Social Networks, Sage Publications, 2013

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code		19M12CS113	3	Semester Odd (specify Odd/Even)		SemesterI sem (M.TechCSE)/DDSession2022 -2023Month from Jul'22 toDec'22			
Course Name ADVANCED WIF				LESS NETWOR	RKS				
Credits			3		Contact H	Hours		3-0	0-0
Faculty (N	ames)	Coordinato	r(s)	Dr K. RAJALA	AKSHMI				
		Teacher(s) (Alphabetica	lly)	Dr K. RAJALA	AKSHMI				
COURSE	OUTCO	OMES						COGNIT	TIVE LEVELS
CO1	Unders and me	stand the funda	mentals hnologi	of Wireless Tra es.	nsmission 7	Fechnolog	gy,	Unde	rstand (C2)
CO2	Netwo networ	rk design, simu ks such as WL	ilate and AN, Blu	l analysis of vari uetooth.	ious protoco	ols in wire	eless	Cro	eate (C6)
CO3	Analys	e the GSM &	UMTS 1	Felecommunicat	ion System	<mark>S</mark>		<mark>Ana</mark>	lyze (C4)
CO4	Discus	s the features of	of 4G an	d 5G networks				Ap	oply (C3)
CO5	Demor	strate the featu	ures of S	SDN framework				Ap	oply (C3)
Module No.	Title of the ModuleTopics in the Module					No. of Lectures for the module			
1.	Introduction Applications of Wireless Networks, history of wireless communication, open research topics, simplified reference model					eless eference	4		
2.	WirelessFrequency for radio transmission, regulation, signTransmissionantennas, signal propagation, multiplexing, modulatspread spectrum, cellular systems				, signals, odulation,	6			
3.	Medium Access Specialized MAC, Hidden and exposed terminals, near and far terminals, SDMA, FDMA, TDMA, CDMA., comparison of S/T/F/CDMA					4			
4.	Wireless LANInfra-red vs. radio transmission, Infrastructure and ad-hoc network, IEEE802.11: System architecture, protocol architecture, Physical Layer, Medium access control layer, MAC management, 802.11b, 802.11a, Bluetooth.					6			
5	WiMAXIEEE802.16 and WiMAX – Security – Advanced 802.16Functionalities – Mobile WiMAX - 802.16e – NetworkInfrastructure					3			
6.	InfrastructureTelecommunication SystemsGSM: Mobile Services, System Architecture, Radio Interface, Protocols, Localization and calling, Handover, Security, Data Services, GPRS,EDGE, UMTS and IMT- 2000: UMTS releases and standardization, UMTS system architecture, UMTS radio interface, UTRAN, Core Natwork Handover				5				

7.	LTE, 4G, 5G	LTE – Network Architecture and Interfaces – Air Interface and Radio Networks – Mobility Management - Interconnection with UMTS and GSM – LTE Advanced (3GPPP Release 10) - Physical Layer and Multiple Access - OFDMA - Channel Modelling for 4G – Introduction to 5G - 3GPP 5G-NR Standards, usage scenarios, 5G Architecture, Next Gen Core (NGC) Network Function , 5G Non Standalone Options (NSA), 5G Advance Networks, mmWave Systems	8				
8.	Software Defined Networks	Introduction – Centralized and Distributed Control and Data Planes – Open Flow – SDN Controllers – General Concepts – VLANs – NVGRE – Network Overlays – Types – Virtualization – Data Plane – I/O – Design of SDN Framework					
	Total number of Lectures 42						
Evaluation	n Criteria						
Componen	nts	Maximum Marks					
T1 T2		20					
End Semes	ter Examination	20					
TA		25 (Attendance = 10, Ouizzes /Assignments /Mini-Project	t = 15)				
Total		100	<u> </u>				
Students form group of size 2-3 members. Each group will identify several wireless network issues in distributed applications in various thrust areas like healthcare, industrial, education, smart city, logistics, environment, governance and etc. Once problem has been identified, the group will analyze the problem and synthesize wireless network based solutions to the identified problem. Each group will apply different wireless network technology and concepts such as WIFI, Bluetooth, WiMAX, 4G/5G, and SDN. This approach will enhance skills of each student and increase the understanding of incorporating wireless networks in recent distributed applications. Moreover, candidate will gain the enough knowledge to provide the wireless network based solutions to enhance the scalability, mobility and coverage issues of any organization/company. After this course, a student will able to undertake any work in this area in the industry or research.							

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

	Reference Books
1.	Jochen Schiller, "Mobile Communications", second edition, Addison-Wesley, 2004.
2.	Martin Sauter, From GSM to LTE, An Introduction to Mobile Networks and Mobile Broadband, Wiley, 2014.
3.	Savo G Glisic, Advanced Wireless Networks – 4G Technologies, John Wiley & Sons, 2007.
4.	Jonathan Rodriguez, Fundamentals of 5G Mobile Networks, Wiley, 2015.
5	Paul Goransson, Chuck Black, —Software Defined Networks: A Comprehensive Approach, Morgan Kauffman, 2014.
6.	Naveen Chilamkurti, SheraliZeadally, HakimaChaouchi, Next-Generation Wireless Technologiesl, Springer, 2013.
7.	IEEE, ACM Transactions, Journals and Conference papers on "Advance Wireless Network"

Detailed Syllabus

Subject Code	21M71CS112		Semester Even	Semester M.Tech I	
				Session 2022- 2023	
				Month from July - December	
Subject Name	Advances in AI	Advances in AI			
Credits	3		Contact Hours	3	
Faculty	Coordinator(s)	Dr. Ankit Vidyarthi			
(Names)	Teacher(s) (Alphabetically)	Dr.	Ankit Vidyarthi		

S.No.	Description	Cognitive Level (Blooms Taxonomy)		
C161.1	Understand the characteristics & significance of AI	Understanding Level (Level III)		
C161.2 Analyze several AI/ML techniques to yield and process information		Analyzing Level		
0101.2	from open real-world data sources	(Level II)		
C161 3	Apply the concept of Machine Learning for industrial applications	Applying Level		
0101.5	Apply the concept of Machine Learning for industrial applications	(Level IV)		
C161.4	Evaluate the use of the Machine Learning algorithms towards pattern	Evaluating Level		
010111	mining	(Level V)		
C161.5	Design algorithmic frameworks for solving time series data patterns	Creating Level		
0101.5	Design algoritanile mane works for sorving time series data patients	(Level VI)		

Module No.	Subtitle of the Module	No. of Lectures for the module	
1	Introduction	Introduction of AI, introduction of Machine Learning, Significance of AI and ML, Application areas, model pipelining	3
2	Mathematical Formulation	Matrices and its operations, Overview of probability theory, Bayes networks, Independece, I-Maps, Undirected graphical models, Bayesian and Markov networks	5
3	Models and Learning	Learning, Types of learning, Local models; Exact inference, Clique trees, Belief propagation, Tree construction, applications solving problems	6

6			
8			
8			
6			
42			
Mortes			
Auendance (15 warks), Assignment/Quiz/winii-project (10 Warks)			
=			

Project based learning: Each student in a group of 2-3 will extract data from real-world domains using data from standard repositories that are globally recognized. For conducting application-based research, the students are encouraged to analyze social/political/financial/disease related data and generate underlying networked structure based on the algorithms of AI.

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Michael Negnevitsky, Artificial Intelligence, Person Publication, Third Edition, 2011				
2.	Toshinori Munakata, Fundamentals of the New Artificial Intelligence, Springer, Second Edition, 2008				
3.	Deisenroth, Marc Peter, A. Aldo Faisal, and Cheng Soon Ong. <i>Mathematics for machine learning</i> . Cambridge University Press, 2020				
4.	Valliappa Lakshmanan, Martin Görner, Ryan Gillard - Practical Machine Learning for Computer Vision_ End-to-End Machine Learning for Images, O'Reilly Media, Inc., 2021				
5.	Laurence Moroney - AI and Machine Learning for On-Device Development_ A Programmer's Guide, O'Reilly Media, Inc., 2021				

Detailed Syllabus

Course Code	17M15CS112	Semester: July- December 2022-23		Semester: I Session 2022-2023 Month from: July			
Course Name	Machine Learning an	d Data Mining I	Lab				
Credits	1		Contact Hours 2			2	

Faculty (Names)	Coordinator(s)	Dr.Amit Mishra
	Teacher(s) (Alphabetically)	Dr.Amit Mishra

COURSE	COGNITIVE LEVELS			
C173.1	C173.1 Identify the programming languages for machine learning and data mining			
C173.2	Use Python to apply and evaluate Linear regression, Logistic regression, kNN, k Means, SVM and ID3 on different datasets	Apply Level-3)		
C173.3	Implement apiori algorithm and Eclat algorithm in R	Apply (Level-3)		
C173.4	Apply Neural networks to model object detection, video tagging, music genre detection etc.	Apply (Level-3)		
C173.5	Evaluate different machine learning models on the basis of their performances	Evaluate (Level- 5)		

Mod ule No.	Title of the Module	List of Experiments	СО			
1.	Python for data sampling and Visualization	data ind iona. To write a program for writing the pixel values of an image b. Write programs for Data Sampling (given dataset).1				
2.	Python for text processing	Use IPython (a web version provided by Jupyter nootbook) to write a word count program. Your program should read a text document (download from https://raw.githubusercontent.com/python/cpython/master/	1			
3.	Classification-1	Implement kNN algorithm using Python. Consider iris dataset and report the accuracy of classification. [May take help from : <u>https://machinelearningmastery.com/tutorial-to-implement-k-</u> <u>nearest-neighbors-in-python-from-scratch/</u>]	2			

4.	Clustering	Clustering: Implement kMeans Algorithm	2	
5.	Classification-2	Classify the wine dataset of UCI Repository by ID3.	2	
6.	Data Mining-1	Implement Logistic Regression on a sample dataset	2	
7.	Data Mining-2	Implement apriori and Eclat algorithm for association rule mining in R	3	
8.	SVM-1	Apply Support Vector Machine on the dataset of question the Parkinson dataset given in <u>https://archive.ics.uci.edu/ml/datasets/Parkinson+Dataset+with+rep</u> <u>licated+acoustic+features+</u> .	2	
9.	Comparison of Classification algorithms	Compare the classification of Iris dataset by different algorithms namely kNN, ID3 and SVM. Report accuracy and other performance measures.Implement neural networks for Classification of <i>four</i> character patterns	5	
10.	ANN	Apply Multi Layer Percepron for supervised learning (problem statement to be given individually)	4	
11.	BPN	Use back propagation for supervised learning . For the data based on 1990 census data from California.Evaluate the accuracy of a model's predictions using RMSE.	4	
12.	CNN	Implement CNN using TensorFlow for classifying MNIST images	4	
Evaluation CriteriaComponentsMaximum MarksLab Test120Lab Test220PBL/Miniproject /Assignment45Attendance15Total100				

PBL- Students in a group of 4-5 will be designing an efficient solution to a given problem / case-studies using appropriate Machine Learning and Data mining Technique studies in the course.

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Jiawei Han, Micheline Kamber, Data Mining, Morgan Kaufmann Publishers, Elsevier, 2005				
2.	Kimball R. and Ross M, The Data Warehouse Toolkit", Wiley				
3.	Pujari, Arun K, Data mining and statistical analysis using SQL, Universities press				
4.	Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining				
5.	Soumen Chakrabarti, Mining the Web: Discovering knowledge from hypertext data", Morgan Kaufmann, Elsevier				

6.	Margaret H. Dunham, Data Mining: Introductory and Advanced Topics, Prentice Hall,2003
7.	Mattison R., Web Warehousing and Knowledge Management", Tata McGraw-Hill.
8.	David Hand, Heikki Mannila and Padhraic Smyth ,Principles of Data Mining,PHI
9.	Transactions on Database Systems (ACM)
10.	IEEE Transactions on Knowledge & Data Engineering
11.	The VLDB Journal The International Journal on Very Large Data Bases

Detailed Syllabus Lab-wise Breakup NOTE: All the entries (...) must be in Times New Roman 11.

Course Code		17M15CS113	Semester Odd 2022		Semeste Month f	er from J	Session 2022-23 uly to Dec, 2022		
Course Name		Cloud Technolog	y Lab						
Credits		1		Contact H	Iours		2 Hours		
Faculty (Names)		Coordinator(s)	Dr Prakash Ku	imar					
		Teacher(s) (Alphabetically)	Dr. Prakash Ku	umar					
COURSE (OUTCO	OMES					COGNITIVE LEV	VELS	
C171.1	De De	monstrate the architec ployment models etc.	eture and layers	of Cloud S	Service M	odels,	Understand (level 2)		
C171.2	Un ale	derstand the working	of CloudSim an	d run diffe	rent scheo	luling	Apply (level 3)		
C171.3	Ana on	alyze various Schedulir Virtual Machines, Conta	ng algorithms and ainers and Dockers	compare the	ir perform	ances	Analyze (level 4)		
C171.4	Ap	ply and evaluate the hniques.	energy aware al	gorithms fo	r using I	OVFS	Evaluate (level 5)		
Module No. Title of the Mod		le of the Module		List of	f Experin	nents	nts CO		
1.			Create Virtual M	Iachines (V	Ms) on C	loudSi	m.	CO1	
2. 0		oudSim installations and Use	m installations Allocate different Cloudlets to VMs and Data Centers using different scheduling algorithms CO2			CO2			
3.	Sci	Analyze various reduling algorithms	Create different D analyze the outcom	t Data Centers and allocate the VMs to them and CO.			CO3		
4.	in	in different scenarios on cloudsim Containers and Dockers in Cloud Environments			CO3				
5.	А	Evaluate Energy ware Simulations using DVFS	Apply and evalute techniques.	d evaluate energy aware algorithms using DVFS CC s.			CO4		
Evaluation	Criter	ia						<u></u>	
ComponentsMaxLab Test# 120Lab Test# 220D2D work60		Maxin 20 20 60 (D	num Marks 2D: 30 marks, PH	3L: 20 mark	cs, Attend	ance: 1	10 marks)		
Total		100							
Project Based Learning: A group of maximum 2 students are to be formed. Each group shall choose a Cloud based project. The project shall be designed and/or modeled based on any Cloud Platform like AWS, Google cloud, Eucalyptus, CloudSim, iFogSim or any simulation tools. The project shall function and run as per the objective of the project. Live demonstration of the project shall be shown during their presentation. The project evaluation shall be done based on the quality, innovation, relevance and creativity involved.									

Reco Refe	ommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, rence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	K. Hwang, Geoffrey C. Fox, Jack J. Dongarra, "Distributed and Cloud Computing- From Parallel Processing to the Internet of Things", Morgan Kauffman Publishers, Elsevier.
2	George Reese, "Cloud Application Architectures: Building Applications and Infrastructure in the Cloud" O'REILLY publication.
3	"Virtualization Overview", White paper, VM Ware.
4.	Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De Rose, and Rajkumar Buyya, CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms, Software: Practice and Experience, Volume 41, Number 1, Pages: 23-50, ISSN: 0038-0644, Wiley Press, New York, USA, January 2011.
5.	Tom Guérout, Thierry Monteil, Georges Da Costa, Rodrigo Neves Calheiros, Rajkumar Buyya, Mihai Alexandru, Energy-aware Simulation with DVFS, Simulation Modelling Practice and Theory, Volume 39, No. 1, Pages: 76-91, ISSN: 1569-190X, Elsevier Science, Amsterdam, The Netherlands, November 2013.
6.	Rajkumar Buyya, Rajiv Ranjan and Rodrigo N. Calheiros, Modeling and Simulation of Scalable Cloud Computing Environments and the CloudSim Toolkit: Challenges and Opportunities, Proceedings of the 7th High Performance Computing and Simulation Conference (HPCS 2009, ISBN: 978-1-4244-4907-1, IEEE Press, New York, USA), Leipzig, Germany, June 21 - 24, 2009 Keynote Paper.
7.	https://www.docker.com
m.	

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code		19M12CS1	12	Semester OddSession 2022 -(specify Odd/Even)Month from Jul		-2023 Ily to Dec			
Course Na	me	Metaheuris	tics in Mc	delling and Opti	imization				
Credits			3		Contact H	Hours		3-0)-0
Faculty (N	(ames)	Coordinat	or(s)	Dr. Parul Agar	wal				
		Teacher(s) (Alphabeti	cally)	Dr. Parul Agar	wal				
COURSE At the com	OUTCO pletion of	DMES of the course,	Students	will be able to				COGNIT	IVE LEVELS
C131.1	Interpr and it'	et and explai s application	n the condin a diver	cepts of Metaheurse range of appl	iristics base ications.	ed optimiz	ation	Understan	d Level (C2)
C131.2	Model to solv	single soluti e a given opt	ion and p imization	opulation based problem.	Metaheuri	stic algor	ithms	Apply Lev	vel (C3)
C131.3	Model proble	Metaheurist ms.	ic algorith	nms to solve Mu	ılti-objectiv	e optimiz	ation	Apply Lev	vel (C3)
C131.4	Model proble	hybrid Meta m.	aheuristic	algorithms to s	olve a give	<mark>n optimiz</mark>	ation	Apply Lev	vel (C3)
C131.5	Explai Metah	n algorithms euristics.	and arc	hitectures for p	arallel imp	lementatio	on of	Understan	d Level (C2)
Module No.	Title o Modu	f the le	Topics i	in the Module					No. of Lectures for the module
1.	Introdu	uction	Optimiz Metaheu	ation Models, A aristics?, Method	pproximate ls and Appl	Algorith	ms, W	hen to use	4
2.	Fundar Metaho	mentals of euristics	Represe Paramet	ntation, Objecti er Tuning; Perfo	ve Functio rmance An	ns; Cons alysis.	traint	Handling;	5
3.	Single Based Metah	-Solution euristics	Basic C Tabu S Neighbo	oncepts, Fitness earch; Iterated rhood Search; Sn	Landscape and Guide noothing Me	e Analysis d Local ethods; No	s; Loca search sisy Me	al Search; Variable thods	6
4.	Population-Based Metaheuristics MethodsBasic Concepts; Stochastic diffusion Evolutionary Search, Social cognitive optimization				6				
5.	Metaheuristics forBasicconcepts;Multi-objectiveContinuousandMulti-objectiveCombinatorialProblems, Multi-criteriaDecisionMaking;OptimizationDesign Issues				3				
6.	FitnessScalar approach, Criterion-Based Methods; Dominance-BasedAssignmentApproaches; Indicator based Approaches; DiversityStrategiesandEvaluationofMulti-objectivePreservation; Performance EvaluationOptimizationImage: Content of the second s					nce-Based Diversity	7		
7.	Hybrid Metahe	euristics	Design Program	and Imple ming Approach	mentation nes; Classi	Issues; cal Hybi	Ma id A _l	thematical pproaches;	7

		Hybrid Metaheuristics with Machine Learning and Data Mining; Hybrid Metaheuristics for Multi-objective Optimization			
8.	Parallel Metaheuristics	Parallel Design and Implementation of Metaheuristics; Parallel Metaheuristics for Multi-objective Optimization	4		
		Total number of Lectures	42		
Evaluation Criteria					
Componen	nts	Maximum Marks			
T1		20			
T2		20			
End Semester Examination		35			
ТА		25 (Attendance(10), Assignments/Mini-project/Tutorials/Quiz	z (15)		
Total		100			

Project based learning: Each group of 3-4 students will be assigned an optimization problem at the beginning. They are required to apply the metaheuristic methods they study on the given problem.

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	Metaheuristics: From Design to Implementation by El-Ghazali Talbi, Wiley, June 2009.					
2.	Sean Luke, 2013, Essentials of Metaheuristics, Lulu, second edition, available athttp://cs.gmu.edu/ <sean book="" metaheuristics.<="" th=""></sean>					
3.	Gandomi, Amir; Yang, Xin-She; Talatahari, Siamak; Alavi, Amir; "Metaheuristic Algorithms in Modeling and Optimization", Metaheuristic Applications in Structures and Infrastructures, Dec 2013.					
4.	Kalyanmoy Deb; "Multi-Objective Optimization Using Evolutionary Algorithms:An Introduction"; https://www.egr.msu.edu/~kdeb/papers/k2011003.pdf					
5.	Kalyanmoy Deb; "Single and Multi-Objective Optimization Using Evolutionary Algorithms"; https://www.iitk.ac.in/kangal/papers/2004002.pdf					
6.	Paulo Cortez, Modern Optimization with R, Use R! series, Springer, September 2014, ISBN 978-3-319-08262-2.					

Research Methodology and Intellectual Property Rights (18M11GE111)

Basic idea of research, types of research, methods to write report and research papers, use of Mendeley in report writing, problem identification and solving, research ethics, patents, intellectual property rights, plagiarism regulation 2018, steps in research process and common methodologies to attempt solution to research paper, basic statistical concepts, handling of raw data, Some common probability distributions, hypothesis testing, parametric and non-parametric data, introduction to regression analysis.

Course Co	ode	18M11GE111	Sei	mester Odd	Semes Montl	ter I Session from Aug - 1	n 2022-23 Dec 2022	3
Course Na	me	Research Metho	dolo	ogy and Intellectua	al Prope	rty Rights		
Credits		2		Contact Hours	5		2-0-0	
Faculty		Coordinator(s)		Dr. Shikha Pande	у			
(Names)		Teacher(s) (Alphabetically)	Dr. Shikha Pande	У			
COURSE	OUT	COMES:					COGNIT	IVE LEVELS
After pursu	ing t	he above mention	ed c	ourse, the student	s will be	e able to:		
C101.1	exp	lain the basic con	cept	s and types of rese	earch		Understar	nding Level (C2)
C101.2	define a research problem, its formulation, methodologies and analyze research related informationAnalyzing Level (C4)						ing Level (C4)	
C101.3	exp rela	plain research ethics, understand IPR, patents and their filing ated to their innovative works.						
<mark>C101.4</mark>	exp test	Applain and analyze the statistical data and apply the relevant st of hypothesis in their research problemsAnalyzing						ing Level (C4)
Module No.	Tit	le of the Module	1	Fopics in the Moo	lule			No. of Lectures for the module
1.	Res	earch	What is research? Types of research. What is not research? How to read a Journal paper?3				3	
2.	Rep	eport writingHow to write report? Use of Mendeley in report4writing. How to write a research paper? Problem identification and solving.4				4		
3.	Eth Res met	Ethics, IPR and Research methodologiesResearch ethics, patents, intellectual property rights, plagiarism regulation 2018. Steps in research process and common methodologies to attempt solution to research paper.					8	

Course Description

4.	Basics of statistics and probability distributions	Basic statistical concepts. Handling of raw data, Some common probability distributions.	7				
5.	Test of hypothesis and regression analysis	bothesis ionHypothesis testing. Parametric and non- parametric data, Introduction to regression analysis.8					
		Total number of Lectures	30				
(Course delivery method:	open ended discussion, guided self-study, lectures)					
Evaluation	n Criteria						
Componer	nts	Maximum Marks					
Mid Term	Examination	30					
End Semes	ter Examination	40					
Assignmen	ts	30 (Quiz, Assignments)					
Total		100					
Project ba	sed learning: Students	divided in small groups will be assigned topics re-	lated to patents,				
intellectual	property rights, plagiar	ism, and statistics. Students can write a report/review	v paper and find				
its similarity through plagiarism software available online. Students may collect data and test the							
<mark>relevant hy</mark>	relevant hypothesis. They may study some data set and do its regression analysis. The main purpose is to						
expose stud	expose students to a wider arena of applicable knowledge of the subject.						
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text							
books, Ref	erence Books, Journals,	Reports, Websites etc. in the IEEE format)	× ×				
Stuart Me Engineerin	elville and Wayne Go g Students, Kenwyn, Sou	oddard, Research Methodology: An Introduction uth Africa: Juta & Co. Ltd., 1996.	for Science &				
Kothari, C 2009.	Kothari, C.R., Research Methodology: Methods and Techniques, New Age International, New Delhi, 2009.						
Kumar, R Publication	Kumar, Ranjit, Research Methodology: A Step by Step Guide for Beginners, 2nd Edition, Sage Publications Ltd., 2005.						
Ramappa, T., Intellectual Property Rights Under WTO, S. Chand, New Delhi, 2008.							
Wayne G Africa: Juta	oddard and Stuart M a & Co, 2001.	lelville, Research Methodology: An Introduction,	Kenwyn, South				

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	21M71CS111	Semester: ODD		Semester	: I Session: 2022 -2023
				Month fr	om: Aug 2022-Dec 2022
Course Name	Data Science using P	ython			
Credits	3-0-0		Contact	Hours	3

Faculty	Coordinator(s)	Dr. Adwitiya Sinha
(Names)	Teacher(s) (Alphabetically)	Dr. Adwitiya Sinha

COURSE	COURSE OUTCOMES		
C183.1	Understand the data analysis techniques	Understand (Level 2)	
C183.2	Understand the concepts behind the descriptive analytics	Understand (Level 2)	
C183.3	Apply predictive analytics of data	Apply (Level 3)	
C183.4	Analyze data using Python programming	Analyze (Level 4)	
C183.5	Evaluate strategies for data science with measures of correlation, association, and learning using Python modules and packages	Evaluate (Level 5)	

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Introduction	Introduction to Data Science - Evolution of Analytics, analytic processes and tools, Analysis vs reporting - Modern data analytic tools. Statistical concepts: Sampling distributions, re-sampling, statistical inference, prediction error.	8
2.	Predictive Analytics	Predictive Analytics - Regression, Decision Tree, Neural Networks. Dimensionality Reduction - Principal component analysis	9
3.	Descriptive Analytics	Mining Frequent item-sets - Market based model - Association and Sequential Rule Mining - Clustering Techniques - Hierarchical - K- Means	9
4.	Data Analysis Using Python	Introduction to Python, Python Application Programming Interfaces & Libraries, File handling, Data Types, Descriptive Statistics, Data Preprocessing, Dirty Data, Examining Single/Multiple Variables, Statistical Methods	10
5.	Exploratory Data Analysis	Exploring univariate and multivariate data: Heat Map, Box and Whisker plot, Scatter plots with histograms, Bubble charts, Geo-plots	6
		Total number of Lectures	42

Evaluation Criteria			
Components	Maximum Marks		
T1	20		
T2	20		
End Semester Examination	35		
TA (Tutorials, regularity & Marco Assignments) 25 (Assignments & Attendance)			
	(Class Presence & Performance = 05		
	Internal Assessment & Assignment in PBL mode = 20)		
Total	100		

Project based learning: Each student in a group of 2-3 will use Python to extract data from real-world domains using data streaming, web crawling, application programming interfaces (APIs), or from standard repositories that are globally recognized. The students will be encouraged to analyze social/political/financial/healthcare related data and perform data science using Python libraries and packages. Project work will focus on developing models to analyze the real-world data by performing statistical, probabilistic and exploratory analysis. The students will also explore learning techniques on variety of datasets and perform case studies using Python programming.

Reco	Recommended Reading material: Text Books/ Reference Books				
1.	Dietrich, David (2015). Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data. EMC Education Services, Wiley.				
2.	Jaiwei Han, Micheline Kamber. (2006) Data Mining Concepts and Technique. Elsevier.				
3.	Ross, Sheldon (2019). A First Course in Probability. 9 th Edition, Pearson.				
4.	Michael Berthold, David J. Hand (2007). Intelligent Data Analysis, Springer.				
5.	Michael Minelli, Michele Chambers, Ambiga Dhiraj. (2013). Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends", John Wiley & Sons.				
6.	Bart Baesens. (2014) Analytics in a Big Data World: The Essential Guide to Data Science and its Applications", John Wiley & Sons.				
7.	Min Chen, Shiwen Mao, Yin Zhang, Victor CM Leung. (2014), Big Data: Related Technologies, Challenges and Future Prospects, Springer.				
8.	Zelle, J. (2016). Python Programming: An Introduction to Computer Science. Franklin, Beedle & Associates, Inc				
9.	Jaworski, M. and Ziadé, T. (2019). Expert Python Programming: Become a master in Python by learning coding best practices and advanced programming concepts in Python 3.7. Packt Publishing Ltd.				

Detailed Syllabus Lab-wise Breakup

			Lab-wise	e breakup				
Course Code		17M15CS111	Semester: ODD		Semester: I Session 2022 -2023			
					Month f	f rom J	ulv to Dec 2022	
Course Name		Advanced Algorithms Lab				5		
Course Mame								
Credits		1		Contact Hours			2	
Faculty (Names)		Coordinator(s)	Manish Kumar Thakur					
Faculty (Names)		T = = h = = (a)						
		(Alphabetically)	Manish Kumar					
COUDCE								
COURSE		JMES				0	COGNITIVE LEVELS	
C170.1		nent algorithms and use appropriate advanced data structures for g computing problems.					Level 3: Apply	
	Design	algorithms using	divide-and-conq	uer, greedy	and dyn	amic	Level 3: Apply	
C170.2	progra	mming strategies, and	further recite	algorithms	that en	<mark>nploy</mark>	Level 5: Evaluate	
	Illustra	ate the mathematical	foundation of 1	network floy	ws and	some	Level 2: Understand	đ
C170.3	import	ant flow algorithms.					Level 3: Apply	-
	Incelar			<u> </u>		h no	Laval 2. Analy	
C170.4		nent randomized algorithms to solve various problems, and the their correctness and complexity					Level 3: Apply	
Understand P. NP. polynomia		mial reduction,	al reduction, NP-hardness, and NP-		Level 2: Understand			
C170.5 Comple		eteness.					Level 4: Analyze	
C170.6	Comp	rehend and select alg	orithm design a	approaches i	in a pro	blem	Level 6: Create	
	specin	c manner.						
Module Title		e of the Module		List of Experimen		ts	СО	
1	Euro	lamontale of	lata Saarahing	Contina t		anlari		CO1
I. Func		tures and algorith	mic Linked I	Linked List. Trees. Fibonacci h		eans splay trees	COI	
	prob	lem solving	dynamic t	rees.	1100114		aps, sping dees,	
2.	Divi	de and Cond	uer Solving N	Aatrix multir	olication	proble	m and subset- sum	CO2
-	Tech	inique	problem u	ising divide-	and-conc	luer ap	proach	
3. Gree		dy Algorithms	Greedy Approximation algorithms- S			Set Cover Problem,	CO2	
			K Center	rs Problem,	Fractio	nal a	nd 0/1 Knapsack,	
			Coinage p	problem; Bir	n packin	g; Job	scheduling, Graph	
			and Shanr	ion-Fanon co	oding.	JI USII	ig mumman counig	
4.	Dynamic Programming Fundamentals of Dynamic programming-based solut		ning-based solution	CO^2				
Tech		inique	approach, Printing Shortest Commo		n Super sequence,	202		
			Dynamic	Programmi	ing on	Trees	, Maximum sum	
	Gron	h Algorithms	rectangle	in a 2D matr	1X.	eme /	Igorithms All Dair	CO1
5.	Solve and analyze Graph problems, Algorithms. All Pair Shortest Problem. Subset-sum problem. Minimum				CO1, CO2			

Spanning Trees (Prim's and Kruskal algorithms); Shortest Path using Dijkstra's algorithm, K-clique

max

One Way of Coping with NP-Hardness. Randomized

flow

and

min-cost

CO3

CO4,

problem, Graph Coloring problem.

-

flow/circulation, Edmonds-Karp algorithm

flows

Network

Flows in Network

Tractable and Non- Tractable

6.

7.

	Problems	Rounding. Vertex Cover and Travelling Salesman Problem.	CO5			
8.	Mini-Project	Mini-Project	CO6			
Evaluation Criteria						
Components	Maximum	Marks				
Lab Test# 1	20					
Lab Test# 2	20					
D2D work	60					
Total 100						

Project based learning: Students in group of 3 to 4 students are required to develop mini-project based on the concepts taught in this course like Greedy algorithms, dynamic programming, network flow, etc. The solution approach for the identified problem statements should include the usages of advanced data structures including string data structures. The problem statements may be a puzzle-based games, graph-based problems, string-based problems, etc. The developed mini project will enhance the algorithmic thinking and problem-solving approaches of students which are highly desirable to excel in software industries.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms, MIT Press, 4 th Edition, 2022
2.	Steven Skiena, The Algorithm Design Manual, Springer; 3 rd Edition, 2020
3.	Tim Roughgarden, Algorithms Illuminated: Part 1: The Basics, Sound like yourself Publishing, September 27, 2017
4.	Tim Roughgarden, Algorithms Illuminated: Part 2: Graph Algorithms and Data Structures, Sound like yourself Publishing, First Edition, 2018.
5.	Tim Roughgarden, Algorithms Illuminated: Part3: Greedy Algorithms and Dynamic Programming, Sound like yourself Publishing, First Edition, 2019.