$Software\ Development\ Fundamentals-II$

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B11CI211		ester: Even 2023 Semester: II Session: CSE/IT/ECE Eify Odd/Even) Month from: Jan to June		
Course Name	Software Developme	Software Development Fundamentals – II			
Credits	4		Contact Hours		4 (3 Hrs. Theory, 1 Hr. Tutorial)
	Coordinator(s) Prantik Biswas		Biswas (J62), Rasl	hmi	Kushwah (J128)

Faculty (Names)	Coordinator(s)	Prantik Biswas (J62), Rashmi Kushwah (J128)
	Teacher(s) (Alphabetically)	J62 – Aditi Sharma, Ankita Verma, Ashish Mishra, Mradula Sharma, Neetu Sardana, Prantik Biswas, Prashant Kaushik, Sangeeta Mittal, Shardha Porwal, Suma Dawn J128 – Arti Jain, Mukesh Saraswat, Raju Pal, Rashmi Kushwah, Shailesh Kumar

	COURSE OUTCOMES	COGNITIVE LEVELS
CO1	Explain various object-oriented concepts like class and objects, friend	Understand Level(Level 2)
	function, function and operator overloading, etc.	
CO2	Apply and implement the relationships of association, aggregation,	Apply Level (Level 3)
	composition, and inheritance	
CO3	Analyze the output of the source code and able to debug the errors	Analyze Level (Level 4)
CO4	Design the class diagram for real life problems and implement it using	Create Level (Level 6)
	virtual functions, abstract classes, templates, and exception handling	
CO5	Apply SQL commands to create tables and perform various operations	Apply Level (Level 3)
	like insert, delete, select, etc.	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Object Oriented Programming	Comparison of Procedural and Object-Oriented Approach, Characteristics of Object-Oriented Languages, Separation of behavior and implementation	2
2.	OO Concepts using C++	Objects, Classes, Internal representations of Objects, Constructors, Destructors Functionand Operator Overloading, Static and Friend Functions	8
3.	Inheritance using C++	Base Class, Derived class, Method Overriding, Private and Public Inheritance, Multiple Inheritance.	3
4.	Polymorphism using C++	Virtual Functions, Pure Virtual Functions, Abstract Classes, Dynamic Dispatch, Internal representations of method tables, RTTI	3
5.	UML/Relationship Implementation in	Models, Views and Model Elements, Class Diagram, Relationships of Association, Aggregation, Composition, and	8

	C++	Inheritance, etc. and their implementing		
6.	Exceptions, Templates, and STL in C++	Exceptions, Try, Catch and Throw, Re-throwing exceptions, Exception and Inheritance, Function Templates, Overloading Functions Template, Class Templates, Collection classes and iteration protocols (STL)	8	
7.	Introduction to Database	Fundamentals of Database and Database Management System, Introduction to Relational Database, Table, Attributes, Records, Introduction to SQL, Data types in SQL, Various operations on single table like create, insert, delete, update, alter, etc. using SQL, SQL queries on single table using select statement with or without where/ group by clause, etc.	10	
	Total number of Lectures			

Project based learning: Each student in a group of 3-4 will have to develop a mini project based on object-oriented programming concepts. The students have to design the class diagram for any real-world application. The students have to implement the mini project using C++/Java language. Project development and its presentation will enhance the knowledge and employability of the students in IT sector.

Evaluation Criteria	
Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
TA	25 (Mini Project (10), Attendance (10), Tutorial Assignments (5))
Total	100

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1	Herbert Schildt, C++: The Complete Reference, McGraw-Hill Osborne Media, 4th Edition, 2017				
2	Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database Systems, Pearson, 7 th Edition, 2016				
3	Stroustrup B., The C++ Programming Language, Addison Wesley, 4th Edition, 2013				
4	Avi Silberschatz, Henry F. Korth, and S. Sudarshan, "Database System Concepts", 6th edition, McGraw-Hill, 2010.				
5	Robert Lafore, Object Oriented Programming in C++, SAMS, 4th Edition, 2002				
6	John Hubbard, Schaum's Outline of Programming with C++, McGraw-Hill, 2 nd Edition, 2000				

Software Development Lab - II

Detailed Syllabus

Lab-wise Breakup

Course Code	15B11CI271	Semes	ter: Even	Semester: II Session: 2022-23 Month from: Jan to June	
Course Name	Software Developm	ment Lab - II			
Credits	1	Contact Hours 2 hrs			
Faculty (Names)	Coordinator(s)	(J62) Neetu Sardana, Mradula Sharma (J128) Mukesh Saraswat			
	Teacher(s) (Alphabetically)	(J62) Adwitiya Sinha, Aditi Sharma, Amarjeet Prajapa Kumar Mehto, Alka Singhal, Ashish Mishra, Amit Mishr Vidyarthi, Arpita Yadav, Amanpreet, Indu Chawla, Jan Megha Rathi, Mradula Sharma, Niyati Agarwal, Neetu S Parul Sharma, Prashant Kaushik, Prantik Biswas, Raghu Sakshi Agarwal, Sandeep Kumar Singh, Sonal, Sarishty Suma Dawn. (J128) Akanksha Bhardwaj, Ambalika Sarkar, Arti Jain, Ch Gupta, Payal Khurana Batra, Raju Pal, Rashmi Kushwah, Shailesh Kumar, Shariq Murtuza			

COURSI	OUTCOMES	COGNITIVE LEVELS
CO 1	Write programs in C++ to implement OOPs concepts related to	Apply Level (Level 3)
	objects, classes, constructor, destructor, and friend function.	
CO 2	Write programs in C++ using OOPs concept like encapsulation,	Apply Level (Level 3)
	inheritance, polymorphism and abstraction.	
CO 3	Write programs in C++ using Standard Template Library.	Apply Level (Level 3)
CO 4	Perform exception handling in C++ programs.	Apply Level (Level 3)
CO 5	Write MySQL queries to perform operations like ADD, DELETE,	Apply Level (Level 3)
	UPDATE, SELECT on relational databases.	

Modul e No.	Title of the Module	List of Experiments	No. of Labs for the module
1.	OO Concepts using C++	Write output-based C++ programs to implement the concepts of Objects, Classes, Internal representations of Objects, encapsulation, Constructors, Destructors, Function and Operator Overloading, Static and Friend Functions.	3
2.	Inheritance using C++	Write programs in C++ to implement concepts of Base Class, Derived class, Method Overriding, Private and Public Inheritance, Multiple Inheritance.	2
3.	Polymorphism using C++	Write programs in C++ using Virtual Functions, Pure Virtual Functions, Abstract Classes, Dynamic Dispatch, Internal representations of method tables, RTTI, operator overriding.	2
4.	UML/Relationsh ip Implementation in C++	Write programs in C++ using based on Class diagram, Relationships of Association, Aggregation, Composition, and Inheritance.	1
5.	Exceptions, Templates, and STL in C++	Write programs in C++ using Exceptions, Try, Catch and Throw, Re-throwing exceptions, Exception and Inheritance, Function Templates, Overloading Functions Template, Class Templates, Collection classes and iteration protocols (STL)	2
6.	Introduction to Database	Design simple SQL queries using MYSQL to apply various operations on single table like create, insert, delete, update, alter, etc., Queries on single table using select statement with or without where/ group by clause, etc.	2
		Total number of Labs	12
	t1 20 fon 2 15 t 2 20 oject 10	rks	

Project based leaning: Groups of 3-4 students will choose a project topic. They will use the concepts of OOP and/or database to execute their project. In a team, they will learn how to apply the concepts for problem solving in a meaningful way.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1	Herbert Schildt, C++: The Complete Reference, McGraw-Hill Osborne Media, 4th Edition, 2017			
2	Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database Systems, Pearson, 7th Edition, 2016			
3	Stroustrup B., The C++ Programming Language, Addison Wesley, 4 th Edition, 2013			
4	Avi Silberschatz, Henry F. Korth, and S. Sudarshan, "Database System Concepts", 6th edition, McGraw-Hill, 2010.			
5	Robert Lafore, Object Oriented Programming in C++, SAMS, 4 th Edition, 2002			
6	John Hubbard, Schaum's Outline of Programming with C++, McGraw-Hill, 2 nd Edition, 2000			

Mathematics-2 (15B11MA211)

Course Description

Course Co	ode 15B11MA2	211	Semester Even	Semester II Session 2022-23 Month from Jan - Jun 2023		
C N	N/ .1 .:	2		Month from Jan	Jun 2023	
	Course Name Mathematics 2					
Credits		4 Contact Hours 3-1-0				
Faculty						
(Names)	Teacher(s)		Prof. Alka Tripathi, l			
	(Alphabeti	cally)	Bhagwati Prasad Char			
			Bhardwaj, Dr. Himan	_		
			Neha Singhal, Dr. N			
			Shruti, Dr. Ram Surat Chauhan, Dr. Aradhana Narang, Dr Amita Bhagat, Dr. Pinkey Chauhan, Dr. Neha Ahlawat, Dr			
			Mohd. Sarfaraz	ikey Chaunan, Dr. N	ena Amawat, Dr.	
			Wolld. Saltataz		COGNITIVE	
COURSE	OUTCOMES				LEVELS	
After pure	ing the above men	tionad (course, the students will	ha ahla ta:	LEVELS	
_			for solving ordinary diff		Applying Level	
C106.1	second order.	emous	for solving ordinary diff	erential equations of	(C3)	
C106.2	explain different	tests/m	ethods of convergence for	or infinite series	Understanding	
					Level (C2)	
C106.3			f differential equations a		Applying Level	
		_	ynomials and Bessel's f		(C3)	
C106.4	classify the partial differential equations and apply Fourier series to find their solution.			Applying Level (C3)		
C106.5	explain Taylor's and transformation	explain Taylor's & Laurent's series expansion, singularities, residues			Understanding Level (C2)	
C106.6			nplex variables to solve t	the problems of	Applying Level	
C100.0	complex differen		_	ine problems of	(C3)	
Module	Title of the		es in the Module		No. of	
No.	Module				Lectures for	
					the module	
1.	Second Order	Linea	r Differential Equation	s of Second Order	5	
	Linear	with	constant coefficients	and with variable		
	Differential	coeffi	cients, Change of Va	riable, Variation of		
	Equations	Paran	neters.			
2.	Convergence of		ergence of series, Tes	~	7	
	Series	Alternating Series, Absolute & Conditional				
		Convergence, Uniform Convergence.				
3.	Series Solution				7	
	and Special		ons and Orthogonality.	•		
	Functions		rrence relations and Orthogonality.			
4.	Fourier Series		er Series. Classification	·	5	
	and Partial	_	ion of vibrating string	~		
	Differential dimensional wave & heat equations.					

	Equations		
5.	Complex	Limit, Continuity and Differentiability of	3
	Variables	Functions of Complex Variables, Analytic	
		Functions, Cauchy's Riemann Equations.	
6.	Complex	Cauchy Integral Theorem, Cauchy Integral	4
	Integration	Formula and Applications.	
7.	Series	Taylor and Laurent Series Expansion, Poles and	4
	Expansion	Singularities.	
8.	Contour	Residues, Cauchy's residue theorem and its	5
	Integration	applications.	
9.	Conformal	Bilinear transformation	2
	Mapping		
Total num	42		

Evaluation Criteria

Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
TA	25 (Quiz, Assignments, Tutorials)
Total	100

Project based learning: Each student in a group of 3-4 will apply the concepts of Fourier Series, partial differential equations and contour integration to solve practical problems.

Recommended Reading material:

- 1. Jain, R. K. & Iyenger, S. R. K., Advanced Engineering Mathematics, 5th Ed., Narosa Publishing House, New Delhi, 2016.
- 2. Brown, J.W. & Churchill, R.V., Complex Variables and Applications, 6th Ed., McGrawHill, 1996.
- 3. Prasad, C., (a) Mathematics for Engineers (b) Advanced Mathematics for Engineers, Prasad Mudranalaya, 1982.
- **4. Kreysizg, E.,** Advanced Engineering Mathematics, 10th Edition, John Willey & Sons, Inc., 2015.
- 5. Simmons, G. F., Differential Equations with Applications and Historical Notes, 2nd Ed. McGraw Hill, 1991.
- **6. Spiegel, M.R.,** Complex Variables, Schaum's outline series, Mac Graw-Hill, 2009.
- 7. Grewal, B. S., Higher Engineering Mathematics, 44th Edition, Khanna Publisher, 2018.

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B11PH211	Semester: Even			er: II Session 2022-23 from: January to May
Course Name	PHYSICS-2				
Credits	4		Contact H	Iours	4

Faculty (Names)	Coordinator(s)	Dr. Sandeep Chhoker and Dr. Ashish Bhatnagar
	Teacher(s)	Prof. S. P. Purohit
	Teacher (s)	Prof. R. K. Dwivedi
		Prof. Navendu Goswami
		Dr. Vikas Malik
		Dr. Prashant Kumar Chauhan
		Dr. Anshu D Varshney
		Dr. B C Joshi
		Dr. Alok P S Chauhan
		Dr. Dinesh Tripathi
		Dr. Anuraj Panwar
		Dr. Manoj Tripathi
		Dr.Guru Prasad Kadam
		Dr. Sandeep Mishra
		Dr. Vaibhav Raut
		Dr. Ravi Gupta

COURS	E OUTCOMES	COGNITIVE LEVELS
Recall the basic concepts relating to electromagnetic theory, lasers, fiber optics and solid state physics.		Remembering (C1)
CO2	Illustrate the various physical phenomena with interpretation based on the mathematical expressions involved.	Understanding (C2)
СОЗ	Apply the basic principles in solving a variety of problems related to lasers, electromagnet theory, fiber and solid state physics.	Applying (C3)
CO4	Analyze and examine the solution of the problems using physical and mathematical concepts involved in the course.	Analyzing (C4)

Module	Title of the	Topics in the Module	No. of
No.	Module		Lectures
			for the
			module

1. <u>Electromagnetism</u>	Introduction of electromagnetism, Basic idea of Cartesian, Spherical	17
	polar and cylindrical coordinate systems, Basics of fields, Gradient, Divergence and Curl, Coulomb's law, Electric Flux & Gauss's law,	
	Applications of Gauss law for Spherical and Cylindrical symmetries (all important cases), Electric field due to charged conductor, Force	
	per unit area on the surface of the charged conductor, Laplace and Poisson's equations and their applications to solve electrostatic	
	problems in Cartesian and cylindrical systems, Treatment of electrostatic problems using Laplace and Poisson's equations in	
	spherical coordinate system, Maxwell's correction to Ampere's law, Displacement current, Maxwell's equations in free space and	
	dielectric media (both differential and integral forms) Poynting's theorem (derivation) and Poynting vector, Electromagnetic waves in	
	free space (equations and solutions) and Transverse nature of EM waves, Energy and momentum in EM waves, Radiation pressure,	
	Propagation of EM waves through boundary, Boundary Conditions across the medium ,Reflection and Transmission of EM waves at	
	normal incidence, Reflection and Transmission at oblique incidence- Laws of Reflection and Refraction, Oblique incidence-p polarization,	
	Fresnel's equations, Total internal Reflection and Brewster's Law for EM waves	
2. <u>Lasers,</u> Optical	Introduction to Laser, spontaneous and stimulated emission, population inversion, Einstein A and B coefficients, Principles and	08
Fiber and their	working of lasers, Three level Laser Scheme, Ruby laser, Applications of lasers, Concept of optical fiber and Principle of Total	
<u>applications</u>	Internal Reflection in optical fiber, Numerical aperture and Single, multistep & graded index fiber, Attenuation coefficient, Transmission losses in optical fiber, Applications of an optical fiber: Endoscopy and sensing applications (discussion of one specific example) of an optical fiber.	
3. Solid State Physics	Basic ideas of Bonding, Ionic bonding, covalent bonding and Metallic Bonding, Inter-atomic coulomb forces in ionic crystals and	15
	Determination of equilibrium separation, Minimum Potential energy and determination of Madelung constant '\alpha 'for NaCl crystal in 1D, Lattice points and space lattice, Basis and crystal structure, Unit cell	
	and Primitive cell, Seven crystal systems and Fourteen, Bravais space lattice, Coordination number, nearest neighbor distance, atomic	
	radius and packing factor in crystal structure, Calculation of lattice constant, Lattice planes and Miller indices, Separation between lattice planes, Derivation and examples, X-ray diffraction, Bragg's law of	
	X- ray diffraction, Electrical properties of metals: Classical free electron theory of conduction in metals, Quantum mechanical	
	treatment: Quantum theory of electronic conduction in metals, Kronig Penney Model: Periodic Potential and Allowed Energies, Emergence of Bands through Kronig Penney Model and Band	
	Theory of Solids, Distinction between metals, Semiconductors and insulators, intrinsic and extrinsic semiconductors, Effective Mass:	
	Concept and Significance, Brillouin zone: Relation with Lattice Structures, Types of Brillouin zones, Energy and Momentum ,Brillouin zone: Origin of Forbidden Bands	
	Total number of Lectures	40

Evaluation Criteria	
Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
TA	25
	(a) Quizzes /class tests (06 M),
	(b) Attendance (05 M)
	(c) Internal Assessment (04)
	(d) Assignments in PBL mode (10 M)
Total	100

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	D. J. Griffiths, Introduction to Electrodynamics, Prentice-Hall India.				
2.	Jerrold Franklin, Classical Electromagnetism, Pearson India.				
3.	G. Keiser, Optical Fiber Communications, Tata Mc Graw Hill Education.				
4.	A. Beiser, Concepts of Modern Physics, Mc Graw Hill International.				
5.	S. O. Pillai, Solid State physics, New Age International (P) Limited.				
6.	B. G. Streetman and S. Banerjee, Solid State Electronic Devices, Prentice-Hall India.				

PBL Assignment Physics-II: Project report with a working model of project (preferred). Maximum of 3 students can work on one topic which will be identified during the semester. Report should include introduction, definition, mathematics, principle, working, figures, applications etc.

PBL Topics (not limited to):

- 1. Verify Inverse Square Law using Mobile Phone.
- 2. Lichtenberg figures
- 3. Working of 5G antenna
- 4. Study of the material used in foldable mobile phones screen
- 5. Optical Fiber in Medical diagnostic/space/mechanical inspection/internet security/communication
- 6. Types of electromagnet and its applications in medical/space
- 7. Earth as big capacitor
- 8. Satellite positioning using geographical coordinates
- 9. LASER scanners

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	15B17PH271	Semester: Even Semester		Semester: II Session 2022 -2023 Month: from Jan-July	
Course Name	Name Physics Lab-2				
Credits	Credits 1		Contact I	Hours	2

Faculty (Names)	Coordinator(s)	Dr. Anshu Dhirendra Varshney and Dr. Ravi Gupta		
	Teacher(s) (Alphabetically)	Amit Verma, Anuj Kumar, Ashish Bhatnagar, Anshu Varshney, B.C. Joshi, Dinesh Tripathi, Guru Prasad Kadam, Manoj Kumar, Manoj Tripathi, Navendu Goswami, Papia Chowdhary, Prashant Chauhan, R. K. Diwedi, Ravi Gupta Sandeep Chhoker, S. P. Purohit, Sandeep Mishra, Suneet Kumar Awasthi, Vikas Malik Vaibhav Rawoot		

COURSE	OUTCOMES	COGNITIVE LEVELS
C171.1	Recall laser, fibre optics, semiconductor and solid state physics principles behind the experiments.	Remembering (C1)
C171.2	Explainthe experimental setup and the principles involved behind the experiments performed.	Understanding (C2)
C171.3	Plan the experiment and set the apparatus and take measurements.	Applying (C3)
C171.4	Analyze the data obtained and calculate the error.	Analyzing (C4)
C171.5	Interpret and justify the results.	Evaluating (C5)

Module No.	Title of the Module	List of Experiments	СО
1.	Semiconductor Physics	 1(a). To determine the band gap in a semiconductor using its p-n junction diode. 1(b). To draw the I-V characteristic of Solar cell and find maximum power and fill factor. 2(a). To measure resistivity of semiconductor at different temperatures by Four Probe Method. 2(b). To determine Band Gap of the semiconductor. 3. To study the Hall effect in semiconductor and to determine its allied coefficients. 	1-5
2.	Solid State Physics	 4. To study the Magnetostriction in metallic rod with the help of Michelson interferometer arrangement. 5. To find the susceptibility of a paramagnetic substance (FeCl₃) in the form of liquid or a solution. 6.Study of dielectric (constant) behavior and determination of Curie's temperature of ferroelectric ceramics. 	1-5
3.	Modern Physics	7.To study the magneto resistance of given semiconductor material. 8(a). To determine the value of specific charge (e/m) of an electron by Magnetron method. 8(b). To determine the velocity of ultrasonic wave in the medium of liquid using ultrasonic interferometer and to determine the compressibility of the given liquid.	1-5

		9(a). To determine Planck"s Constant using LEDs of known wavelength.9(b). To study the photovoltaic cell and hence verify the inverse square law.	
4.	Optical Fiber	 10(a). To determine the numerical aperture of a given multimode optical fiber. 10(b). To measure the power loss at a splice between two multimode fibers and tostudy the variation of splice loss with Longitudinal and Transverse misalignments of thegiven fibers. 	1-5

Evaluation Criteria

Components Maximum Marks

Mid Term Viva (V1): 20 End Term Viva (V2): 20

D2D : 60 = 30 (Day to day viva) + 10 (PBL) + 10 (attendance) + 10 (Lab Record)

Total : 100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Dey and Dutta, Practical Physics

2. Lab Manuals

Project based learning: Each student in a group of 3-4 or individually will develop a mini project with the help of various concepts of semiconductor physics, solid state physics, and optical fiber. Individually or in a team they will learn how to apply the concepts for problem solving in a meaningful way.

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B11EC111	Semester: Eve	en		er: II Session: 2022 -23 from: Jan-June
Course Name	Electrical Science -1				
Credits	4		Contact	Hours	3-1-0

Faculty (Names)	Coordinator(s)	Satyendra Kumar, Shamim Akhter
	Teacher(s) (Alphabetically)	Archna Pandey, Ashish Gupta, K.Nisha, Rachna Singh, Ritesh Kumar Sharma,Smriti Bhatnagar, Varun Goel,Vivek Dwivedi

COURSE	OUTCOMES	COGNITIVE LEVELS
C113.1	Recall the concepts of voltage, current, power and energy for different circuit elements. Apply the Kirchhoff laws and different analyzing techniques to identify the different circuit parameters.	Applying Level (C3)
C113.2	Define and apply the networks theorems in the complex AC and DC circuits, networks. Demonstrate the physical model for given Sinusoidal AC signal and construct the phasor diagrams.	Applying Level (C3)
C113.3	Demonstrate the concept of resonance and operate different instrumental and measurement equipment's.	Understanding Level (C2)
C113.4	Demonstrate the construction and working of a single phase transformer.	Understanding Level (C2)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Basic Concepts	Voltage, Current, Power and Energy analysis for Circuit elements (R, L, C), Independent and Dependent Sources, Kirchhoff's Laws, Voltage Divider rule, Current Divider rule.	7
2.	DC Circuit Analysis	Star-Delta Transformation, Source transformation, Mesh and Supermesh Analysis, Nodal and super nodal Analysis	7
3.	Network Theorems	Theorems Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem.	
4.	Sinusoidal Steady State Analysis Physical Model for a Sinusoid, Average Value, Effective Value, Phasor presentation, Addition of Phasor using Complex Numbers, Concepts of impedance and admittance.		5
5.	5. AC Network Analysis and Theorems Mesh and Nodal analysis, Superposition Theorem, Theorem, Norton's Theorem, Maximum Power Transfer Theorem.		7
6.	6. Resonant Circuits Series and Parallel resonance, frequency response of Series and Parallel resonance, Q-Factor, Bandwidth.		3
7.	Electrical Essentials of an Instrument, voltmeter, ammeter, Instruments Ohmmeter, Cathode Ray Oscilloscope		2
8.	Single Phase Transformer	Principle of operation, construction, e.m.f. equation, equivalent circuit, power losses, efficiency (simple numerical problems),	3

	Total number of Lectures	42
Evaluation Criteria		
Components	Maximum Marks	
T1	20	
T2	20	
End Semester Examination	35	
TA	25 (Assignment, quiz, attendance)	
Total	100	

Project based learning component: Students will learn fundamental concepts, working and applications of voltmeter, ammeter, Ohmmeter, Cathode Ray Oscilloscope that develop aptitude among students to design minor and major projects. They will also develop knowledge about step-up and step-down transformers which can be further used to design advanced circuits in communication and robotics. It will also help develop concepts about instrumentation in electrical/electronics/biotech/communication based industries.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
Text	Text Book				
1	Robert L. Boylestad, Louis Nashelsky, "Electronic Devices and Circuit Theory", 11 th ed, Prentice Hall ofIndia, 2014.				
2	D.C. Kulshreshtha, Basic Electrical Engineering, Revised 1st ed, Tata Mc Graw Hill, 2017.				
Refe	Reference Book				
1	R.C. Dorf and James A. Svoboda, "Introduction to Electric Circuits", 9th ed, John Wiley & Sons, 2013.				
2	Charles K. Alexander (Author), MatthewN.O Sadiku, "Fundamentals of Electric Circuits", 6 th ed, Tata Mc Graw Hill, 2019.				

Course Description

Course Code	15B17EC171	Semester -: E (specify Odd/E		Semeste Month-	er II Session: 2022 -23 : January - June
Course Name	Electrical Science Lab-1				
Credits	1		Contact I	Hours	2

Faculty (Names)	Coordinator(s)	Vivek Dwivedi & Bajrang Bansal		
	Teacher(s)	Atul kumar Srivastav, Akansha Bansal, BhawnaGupta, Gaurav Verma, Juhi Gupta, Mandeep Singh Narula, Kuldeep Baderia, Samriti Kalia, Shamim Akhter, Vishal Narayan Saxena, K. Nisha, Shradha Saxena, Ankur Bhardwaj, Smiriti BhatNagar, Rachana Singh		

COURSE O	UTCOMES	COGNITIVE LEVELS
C176.1	Understand various active and passive components and instruments (Multimeter, Bread board, Regulated D.C. power supply).	Understanding (Level II)
C176.2	Acquire the knowledge of electrical network and circuit such as branch, node, loop and mesh in networks and circuits.	Analyzing (Level IV)
C176.3	Study and verification of reduction technique using different network theorem.	Remembering (Level I)
C176.4	Study and verification of series and parallel AC circuits as well as Open & Short Circuit Test in single phase transformer.	Applying (Level III)

Module No.	Title of the Module	List of Experiments	COs
1.	Introduction of active and passive components	Introduction to various components (Resistor, Capacitor, inductor, and IC) and instruments. Multimeter, Bread board, Regulated D.C. power supply and CRO.	C176.1
2.	Analysis and verifications of Mesh and Node	Verification of KVL and KCL using a given circuit.	C176.2
3.	Study and Analysis of Superposition Theorem	Verification of Superposition Theorem.	C176.3
4.	Analysis and verification of Thevenin's Theorem	Verification of Thevenin's Theorm.	C176.3
5.	Analysis and verification of Maximum Power Transfer Theorem	Verification of Maximum Power Transfer Theorem.	C176.3
6	Analysis and	Verification of Reciprocity Theorem	C176.3

verification of Verification of Reciprocity Theorem		
Study and Verification of AC Signal in term of RMS and PP Value	To study the Root-Mean-Square (RMS), Peak, and Peak-to-Peak Values, Measurements with Oscilloscope.	C176.4
Study and Verification of of Star-Delta Theorem	Verification of Star-Delta Theorem	C176.4
Study and Analysis of Series Resonance Circuit	To study the behavior of Series- RLC Circuit at Resonance.	C176.4
Study and Analysis of Parallel Resonance Circuit	To study the behavior of Parallel RLC Circuit at Resonance.	C176.4
Study of open Circuit Test	Open Circuit Test in Single Phase Transformer using Vlab.	C176.4
Study of Short Circuit test	Short Circuit Test in Single Phase Transformer using Vlab.	C176.4
		num Marks 20 20 15+15+30)
	Verification of Reciprocity Theorem Study and Verification of AC Signal in term of RMS and PP Value Study and Verification of of Star-Delta Theorem Study and Analysis of Series Resonance Circuit Study and Analysis of Parallel Resonance Circuit Study of open Circuit Test Study of Short Circuit test Criteria	Verification of Reciprocity Theorem Study and Verification of AC Signal in term of RMS and PP Value Study and Verification of of Star-Delta Theorem Study and Verification of of Star-Delta Theorem Study and Analysis of Series Resonance Circuit Study and Analysis of Parallel Resonance Circuit Study of Open Circuit Test in Single Phase Transformer using Vlab. Criteria ts Maxin

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

100

Total

Refe	rence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Nilsson Riedel, Electric Circuits," Pearson, 11th Edition, 2019
2.	Abhijit Chakrabarti, "Circuit Theory Analysis and Synthesis," Dhanpat Rai & Co.; 7th Edition, 2018
3.	U. S. Bkashi A.U. Bakshi S. Ilaiyaraja,, "Circuit Theory Technical Publications; 3 rd Edition, 2019
4.	Roman Malaric, "Instrumention and Measurement in Electrical Engineering, "Universal Publisher, 3 rd Edition, 2011.
5.	DP Kothar and I J Nagrath, "Electric Machine," TMH; 4 th Edition, 2010

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	18B15GE111	Semester: Even (specify Odd/Even)			er: II; Session 2022-2023 From: Jan - June
Course Name	Engineering Drawing				
Credits	1.5		Contact Hou		3

Faculty (Names)	Coordinator(s)	Ms. Madhu Jhariya, Dr. Niraj Kumar
	1 Cachel (5)	Mr. Chandan Kumar, Ms. Madhu Jhariya, Dr. Niraj Kumar, Mr. Nitesh Kumar, Dr. Prabhakar Jha, Mr. Rahul Kumar, Dr. Satyanarayan Patel, Mr. Shwetabh Singh,

COURSE	OUTCOMES	COGNITIVE LEVELS
C178.1	Recall the use of different instruments used in Engineering Drawing and Importance of BIS and ISO codes.	Remembering Level (C1)
C178.2	Illustrate various types of mathematical curves and scale.	Understanding Level (C2)
C178.3	Classify different types of projection and Construct Orthographic projection of Point, Line, Plane and Solid.	Applying Level (C3)
C178.4	Construct Isometric Projection and Conversion of Orthographic view to Isometric view and vice-versa.	Applying Level (C3)
C178.5	Construct Engineering model in Drawing software (AutoCAD) and Compare it with conventional drawing.	Analyzing Level (C4)

Module No.	Title of the Module	List of Experiments	
1.	Introduction to Engineering Drawing	 Principles of engineering graphics and their significance, usage of drawing instruments. Technical vertical capital letters which includes English alphabets and numeric. 	C178.1
2.	Engineering Curves	Constructing a pentagon and hexagon; engineering curves: Parabola, Ellipse, Hyperbola, Cycloids and Involutes.	C178.2
3.	Orthographic Projections	 Projection of points: Point on VP, HP, in space. Projection of straight lines: Lines inclined or parallel to any one of the planes; lines inclined to both HP and VP with traces. Projection of planes: Plane on VP, HP, inclined to any one of the planes; plane inclined to both HP and VP. 	C178.3

4.	Projections of Regular Solids	Projections of solids in simple position inclined to one/both the planes.	C178.3		
5.	Sections and Sectional Views of Right Angular Solids	• Sections of solids: Section of standard solids and true shape section of standard machine elements for the section planes perpendicular to one plane and parallel or inclined to other plane.	C178.3		
6.	Isometric Projections	Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa.	C178.4		
7.	Overview of Computer Graphics	Demonstrating knowledge of the theory of CAD software; Dialog boxes and windows; Shortcut menus; the Command Line; the Status Bar; Isometric Views of lines, Planes, Simple and compound Solids.	C178.5		
8.	Customization & CAD Drawing	CAD Drawing along with customization tools, Annotations, layering & other functions. Orthographic Projections; Model Viewing; Co-ordinate Systems; Multi-view Projection; Surface Modeling; Solid Modeling.	C178.5		
9.	Demonstration of a simple team design project	Technical 2D/3D orthographic and Isometric projections; Demonstration of a simple team design project.	C178.5		
Evaluation	Evaluation Criteria Components Maximum Marks				
Mid Viva		20			
End Viva TA		20 60			
Total		100			

Project based learning: Auto-CAD is a computer-aided software used for creating 2D/3D models of different machine & structures along with all their components to visualize and analyze the feasibility of the same well before the actual manufacturing/construction. The laboratory mainly focused on engaging the students by replicating 2D and 3D models of common engineering equipment and instrumentation diagrams that enhances student's perception of their graphic expression skills.

III.	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Bhatt N.D., Panchal V.M. & Ingle P.R., Engineering Drawing, Charotar Publishing House, 2014.				
2.	Shah, M.B. & Rana B.C., Engineering Drawing and Computer Graphics, Pearson Education, 2008.				
3.	3. George Omura, Mastering AutoCAD 2021 and AutoCAD LT 2021, Sybex, 2020.				
4.	Alan J. Kalameja, AutoCAD 2010 Tutor for Engineering Graphics, Autodesk Press, 2009.				

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	18B15GE112	Semester: EVEN			er: 2 nd Session: 2022-23 : Jan-Jun
Course Name	Workshop				
Credits	1.5		Contact H	lours	03

Faculty (Names)	Coordinator(s)	Prabhakar Jha, Nitesh Kumar
	Teacher(s) (Alphabetically)	Chandan Kumar, Madhu Jhariya, Niraj Kumar,Nitesh Kumar. Prabhakar Jha, Rahul Kumar, Satyanarayan Patel and Shwetabh Singh

COURSE	OUTCOMES	COGNITIVE LEVELS
C179.1	Tell the basic of manufacturing environment and various safety measures associated with it.	Remembering Level (C1)
C179.2	Apply the appropriate tools to fabricate joints utilizing workbench tools.	Applying Level (C3)
C179.3	Create various prototypes in the carpentry trade, fitting trade, and welding trade	Creating Level (C6)
C179.4	Demonstrate the working principle of lathe, shaper and milling machines and able to fabricate the prototypes of desired shape and accuracies.	Understanding Level(C2)

Module No.	Title of the Module	List of Experiments	СО
1.	Carpentry	Preparation of T joint as per the given specification. Preparation of dovetail joint/ cross lap joint as per given specification.	C179.2, C179.3
2.	Welding Shop	To study Gas welding and Arc welding equipment and various safety measures associated with it. To make butt joint and lap joint.	C179.1, C179.2, C179.3
3.	Sheet Metal Shop	To prepare a square tray using GI sheet. To prepare a funnel using GI sheet.	C179.2, C179.3
4.	Fitting Shop	To prepare V- groove fit as per given specifications. To prepare square fit as per given specifications.	C179.2, C179.3
5.	Machine Shop	To perform turning, facing and grooving operation on Lathe. To perform slotting operation on Shaper Machine. To perform face milling operation on Milling Machine.	C179.4

Evaluation Criteria

Components Maximum Marks

 Viva 1
 20

 Viva 2
 20

Report file, Attendance, and D2D 60 [File Work (20) + Attendance (10)+(Experimental Work (30)]

Total 100

Project based learning: Here students are divided in groups and learn about the applying of appropriate tools to fabricate joints utilizing work-bench tools which helps them in creating various prototypes in the field of engineering and technology. In the present workshop laboratory with the application of the course outcomes, students prepare their projects like robotic car, cutting of electronic board made of wood, etc. where application of carpentry shop, sheet metal shop and fitting shop is required.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, 1. Mumbai Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering 2. Technology", 4th edition, Pearson Education India Edition, 2002. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata Mc GrawHill House, 3. 2017. John K.C., Mechanical Workshop Practice, 2nd Edition, PHI, 2010 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice 5. Hall India, 1998 Gowri P.Hariharan and A. Suresh Babu," Manufacturing Technology – I" Pearson 6. Education, 2008 Raghuwanshi B.S., Workshop Technology Vol. I & II, Dhanpath Rai & Sons. 7.

<u>Detailed Syllabus</u> <u>Lecture-wise Breakup</u>

Subject Code	22B12HS111	Semester: EVEN	Semester: 2 Session: 2022-2023	
			Month from Jan to June	
Subject Name	LIFE SKILLS AND EFFECTIVE COMMUNICATION			
Credits	2	Contact Hours (1-2-0)		
Faculty (Names)	Coordinator(s)	Dr. Badri Bajaj & Dr. Praveen Kumar Sharma		
	Teacher(s)	Dr. Amandeep Kaur, Dr. Anshu Banwari, Dr. Ankita Das, Dr. Chandrima		
	(Alphabetically)	Chaudhuri, Dr. Debjani Sarkar, Dr. Deepak Verma, Dr. Ekta Srivastava, Dr.		
		Nilu Choudhary, Dr. Kanupriya Misra Bakhru, Dr. Monali Bhattacharya, Dr.		
		Swati Sharma,		

COURSE OUTCOMES: The students will be able to:		COGNITIVE LEVELS
C180.1	Understand different life skills required for Self, Family, Society and lifelong Understand (C2) success.	
C180.2	Apply listening, speaking, reading and writing skills in professional environment.	Apply (C3)
C180.3	Develop Work-place skills for personal and professional excellence.	Analyze (C4)
C180.4	Evaluate and make decisions for empowerment of self and others.	Evaluate (C5)

Module No.	Subtitle of the Module	Topics in the module	No of Lectures	No of Practical
1.	Introduction	Overview of Life Skills: Meaning and significance of life skills, Life skills identified by various organizations, Life Skills for Self, Family, Society and lifelong success. Practical 1: Ice-breaking and Introducing Oneself Practical 2: Understanding Self	2	4
2.	AdvancedLSRW Skills	Advanced Reading and Comprehension Skills, inferring lexical and contextual meaning, employing discourse analysis, Advanced Speaking Skills: Conversations, Dialogues and Debates, Persuasion, Negotiation Skills, Expressing Opinions, Agreement and Disagreement, Advanced Listening Skills, Advanced Writing skills: The art of Condensation, Note making, Essay Writing. Practical 3: Academic Listening Practical 4: Comprehensive Reading Practical 5: Career-oriented Writing	2	6
3.	Work-Place Skills	Interpersonal Skills: Team- work skills, Empathy, Emotional Intelligence, VUCA Leadership, Resilience, Tolerance, Self-Belief and Time Management Practical 6: Team Communication-1 Practical 7: Team Communication-2	3	4
		Presentation and Interaction Skills: Speech Delivery, Group Discussion, Presentation Skills (Focused and targeted information seeking and presentation), Public Speaking, Audience Analysis, Interviews, Assessment of Personality - Projective& Self Report Techniques - Building Self-Confidence – Enhancing Personality Skills. Practical 8: Technical Presentation-1 Practical 9: Technical Presentation-2	2	4

	Creativity and Critical Thinking, Creativity, Definition.	2	1
	Creativity and Critical Thinking: Creativity: Definition;	2	4
	Characteristics of Creative Person: Fluency; Originality;		
	Curiosity; Critical Thinking, Problem Solving		
	Techniques: Six Thinking Hats, Mind Mapping etc.		
	Practical 10: Thinking Skills		
	Practical 11: Interview Skills-1		
4. Ethics and	Holistic Life Harmony in personal and social life: Professional	2	2
	Integrity, Respect & Equality, Building Trusting		
	Relationships. Concept of personal and group Ethics;		
	Balance between - rights and duties-welfare of self and		
	welfare of all. Understanding Nine universal values in		
	relationships. Understanding harmony in the Family.		
	Harmony in the Family; Trust (Vishwas) and Respect		
	(Samman) as the foundational values of relationship.		
	Understanding the harmony in the society (society being		
	an extension of family): Undivided Society		
	(AkhandSamaj), Universal Order (Sarvabhaum		
	Vyawastha)- from family to world family. Gender		
	Harmony & equity.		
	Practical 12: Interview Skills-2		
	Character, Righteousness and Virtues for A Meaningful	1	
	Life: Self-Realization Through Spiritual texts: Egoless,	_	
	Humility, Righteousness, Purity, Truthfulness, Integrity,		
	Self-restraint, Self-control, Sense of responsibility,		
	Empathy, Love, Compassion, Maitri / Comradeship,		
	Cooperation, Tolerance and Gratitude.		
	Practical 13: PROJECT		4
	Practical 14: PROJECT		,
Total number of Hours		14	28

Evaluation Criteria

Components Maximum Marks

T1 20

T2 20 (Technical Presentations)

End Semester Examination 35

TA 25 (Class participation, Project)

Total 100

Project Based Learning:

Students, in groups of 4-5, are required to visit Old Age Home/ Underprivileged Children/ NGO/ Cancer Hospital / etc. Spend time with them for 3-4 hours. Apply Life Skills learned in understanding their feeling and help them by providing solution to ease their stress. Document your visit and present in the class.

Reco	mmended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference
Book	s, Journals, Reports, Websites etc. in the IEEE format)
Text	Book(s):
1.	Wadkar Alka, Life Skills for Success, Sage Publication Pvt Ltd, 2019
2.	Human Values, A.N. Tripathi, New Age International Pvt Ltd. Publishers New Delhi ,2005
Refer	rence Book(s):
3.	Carnegie Dale, Become an Effective Leader, New Delhi: Amaryllis, 2012
4.	Harold R. Wallace et. al, Personality Development, Cengage Learning India Pvt. Ltd; New Delhi, 2006
5.	Barun K. Mitra, Personality Development & Soft Skills, Oxford University Press, New Delhi, 2012.
6.	Mark G. Frank, David Matsumoto, Hyi Sung Hwang, Nonverbal Communication: Science and Applications, 2012,
	1st Edition, Sage Publications, New York.
7.	William S. Pfeiffer, Public Speaking, Pearson, Delhi, 2012.
8.	Shiy Khera, You Can Win, Macmillan Books, New York, 2003.

9.	S. Kumar and PushpLata, Communication Skills, Oxford University Press,1st, Ed. 2011
10.	Raman M. and S. Sharma, Technical Communication: Principles & Practices, 29 th Impression, Oxford University
	Press, New Delhi, 2009