M.Sc. Microbiology Semester II

Enzyme & Bioprocess Technology (Sem II)

Course Code	19M21BT117	Semester: Even	Semester:1sSession:2022-23Month from:Jan to June	
Course Name	Enzyme & Bioprocess Technology			
Credits	3-1-0	Contact Hours	4	

Faculty (Names)	Coordinator(s)	Prof. Sudha Srivastava		
	Teacher(s) (Alphabetically)	Prof. Sudha Srivastava, Dr Vibha Gupta		

COURSE able to	OUTCOMES: Upon completion of the course, students will be	COGNITIVE LEVELS
CO117.1	Explain biochemical reactions and structure function relationships of different classes of enzymes	Understand Level (C2)
CO117.2	Apply production and optimization methods for industrial products	Apply Level (C3)
CO117.3	Summarize microbial growth kinetics and bioreactors for production	Understand Level (C2)
CO117.4	Research and present a contemporary application of enzyme technology and bioreactor engineering.	Analyze Level (C4)

Module	Subtitle of the	Topics in the module	No. of Lectures
No.	Module		
1.	Introduction	Enzymes - Nomenclature and Classification,	5
	and Scope	Biological Roles, Enzyme activity, Specific	
		activity and turn over number, Coenzymes and	
		cofactors, Isozymes, Synzymes scope of	
		enzymes in medicine, detergents, food and	
		beverage, textiles and leather. Significance of	
		Acetyl choline esterase, creatine kinase, trypsin,	
		amylase, cellulase;	
2	Structure	3D- Structure of Enzymes, Active Site,	7
	function	Modifiers of Enzyme Activity, Enzyme	
	relationships	Activators, Enzyme Inhibitors, structure-	
	_	function relationships in model proteins like	
		ribonuclease A, Triose phosphate isomerase,	
		chymotrypsin etc.; Protein folding: folding of	
		single and multiple-domain proteins, Anfinsen"s	
		Dogma, Levinthal paradox, cooperativity in	
		protein folding	
3.	Production of	Sources of industrial enzymes (natural &	6
	Enzymes	recombinant), Screening for new and improved	

Total	4 h d h	100 nponent: The students will be provided with the insig	ht into in dustais
TA		25 (PBL, Class test, Assignment)	
	mester Examination	35	
T2		20	
T1		20	
Compo	onents	Maximum Marks	
	ion Criteria		
		Total number of Lectures	42
		butanol-acetone fermentation	40
	fermentation	for production of alcohol, lactate, butyrate,	
8.	Microbial formation	Primary and secondary metabolite, Processes	4
0		mass transfer coefficient	4
	Mass Transfer	processes; Aeration and agitation, volumetric	
7.	Energy and	Energy and mass balance in biochemical	4
-		operations;	
		Bioreactors- Brief introduction to design and	
6.	Bioreactors	Ideal and non-ideal culture system, types of	5
		kinetics, maintenance energy	
	kinetics	product stoichiometry, multi-subtrate growth	
	Growth	phase; Exponential growth model, substrate and	
5.	Microbial	Different growth stages – lag, log and stationary	7
		food and environment.	
		application as biosensors in industry, health care,	
		enzyme systems, Enzyme electrodes and their	
		Overview of applications of immobilized	
		cross-linking, covalent binding with examples;	
		adsorption, matrix entrapment, encapsulation,	
	Immobilization	Techniques - Physical and chemical -	
	enzyme	Disadvantages, Types of Immobilization	·
4.	Techniques of	Immobilization - Definition, Advantages &	4
		enzyme production and downstream processing	
		isolation and purification of commercially important enzymes, large-scale industrial	
		enzymes, different methods of extraction,	

Project based learning component: The students will be provided with the insight into industrial production of primary and secondary metabolites. They will present the details on production of any industrial product.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Lehninger Principles of Biochemistry, 7 th Edition; Freeman, WH & Company, 2017

- 2. Biochemistry, 9th Edition by Jeremy Berg, LubertStryer, John Tymoczko, Gregory Gatto; WH Freeman, 2019
- **3.** Bioprocess Engineering: Basic Concepts; 3rd Edition by Matthew DeLisa, FikretKargi, Michael L. Shuler; Prentice Hall; 2017

4. Methods in Enzymology series by Academic Press

- **5.** Principles of Fermentation Technology, 3rd Edition by Stanbury PF, Whitaker A and Hall SJ, Elsevier, 2017
- 6. "Bioprocess Engineering Principles", Doran, P.M., Academic Press

ENVIRONMENTAL MICROBIOLOGY

Course Code	19M21BT11	Semester:	Semester: II S	ession: 2023
	4		Month from:	Jan-June, 2023
Course Name	Environmental Microbiology			
Credits	3-1-0-4		Contact Hours	4

Faculty	Coordinator(s)				
(Names)	Teacher(s) (Alphabetically)1. Prof. Krishna Sundari				
Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module		
1.	General concept of Microbes, Microbial ecology & Environment	Concept of Microbes with respect to Environment & Ecosystem, Soil as an environment for diverse microorganisms, Understand the biogeochemical cycles, The global carbon cycle and microorganisms, carbon cycle and the green house effect, diversity of microbes, microbial communities in environment	6		
2.	Microbial interactions in Environment	Microbial interactions - mutualism, commensalism, amensalism, synergism, parasitism, predation and competition, Microbial interactions with plants– phyllosphere, mycorrhizae, rhizosphere and symbiotic association in root nodules.	4		
3.	Microbes in aquatic environments	Aquatic habitats - freshwater - lakes, ponds and streams; marine habitats - estuaries, deep sea, hydrothermal vents, saltpans and microbes acclimatised, Factors affecting microbial growth in aquatic environments, coral reefs and mangroves and their microbial communities; zonation – food chain and food web.	3		
4.	Microbes under extreme environments	Categories of extremophiles and extremotrophs, Distribution of extremophiles and extremotrophs, Types and diversity of thermophiles, psychrophiles, halophiles, alkaliphiles, acidophiles and barophiles.	3		
5.	Microbes for improved soil health	Classification of soil, physical and chemical properties of soil, structure of soil, Soil microbes and fertility of soil, Biotechnology of nitrogen fixation, Biofertilizers VAM, <i>Rhizobium</i> , <i>Frankia</i> , <i>Azospirillum</i> , <i>Azotobacter</i> , cyanobacteria and <i>Azolla</i> and Biopesticides	6		
6.	Microbiology of waste water	Principle microbial groups in waste water environment, their role, Treatment of liquid wastes –primary, secondary, tertiary treatment; anaerobic (methanogenesis), aerobic, trickling, activated sludge, oxidation pond.	4		
7.	Microbes in remediation and	Bioremediation types (<i>in situ / ex situ</i>) and methods, Treatment of solid wastes -composting, vermiform	6		

	biomass utilization	composting, saccharification, gasification, treatment of	
	bronnuss utilization	liquid wastes, urban wastes, industrial wastes, microbes	
		for utilization of starch and sugars in biomass, biogas	
		and biofuels	
8.	Microbes for degradation of xenobiotics and decontaminating polluted sites	Microbe assisted degradation of xenobiotics, Degrees of biodegradation, Factors needed for biodegradation and adaptation, solutions from Biodegradation, Biodegradable and non – biodegradable organic matter, toxicity testing, Bistimulation, Bioaggumentation, Biosorption, Biosensors, Bioindicators, microbes to	4
		address heavy metal pollution	
9.	Microbial technologies for environmental applications	Application of microbes in various industries (paper & pulp, tanneries, distilleries, food processing & diary industry) microbes for treatment of Oil spills, radioactive spillage Biofilters, Biofuels, Bioplastics, Biofilms in industry & environment, Case studies	4
10.	Regulations for use of microbes	Microbes and biosafety levels, regulations for application of microbes in research and environment	2
Total n	umber of Lectures		42
Evalua	tion Criteria		
Compo		Maximum Marks	
T1		20	
T2		20	
End Sei	mester Examination	35	
ТА		25	
Total		100	

<u>**PBL component:**</u> students take part as productive team members in projects (project based learning) concerning to microbial ecology, soil and environmental microbiology. Involving reference of quality research papers, understand advanced research methods, real-world learning associating issues in environmental disturbances, involves constructive analytical thinking to offer biotechnolgical solutions for safer environment

Reco	mmended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text
books	s, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Prescott's Microbiology, 10 th Edition, Eds. Joanne Willey, Linda Sherwood and Christopher J.
	Woolverton, 2017
2.	Environmental Microbiology, 3rd Edition, Eds: Ian <u>Pepper, Charles Gerba, Terry Gentry, Academic</u> <u>Press, 2014</u>
3.	Environmental Science: toward a Sustainable Future. Richard T Wright, Dorothy F Boorse, 12 th Edition, Pearson India education services pvt Ltd., 2015
4.	Basic Environmental technology: water supply, waste management and pollution control, Jerry A Nathanson, Richard A Schneider, sixth edition, Pearson India education services pvt Ltd.,, 2017
5.	Research articles from refereed journals.

MEDICAL MICROBIOLOGY

Course Code	19M21BT118	Semester: Ev	en	Semest	er: II
				Session	: 2022-23Jan-June
Course Name	Medical Microbiology				
Credits	4		Contact	Hours	4

Faculty	Coordinator(s)	Prof. Reema Gabrani
(Names)	Teacher(s) (Alphabetically)	Prof. Reema Gabrani, Dr. Shalini Mani

COURS	E OUTCOMES	COGNITIVE LEVELS	
CO 1	Understand the association between microbes and human health	Understand Level (C2)	
CO2	Apply advance techniques for disease diagnosis	Applying Level (C3)	
CO3	Analyze antimicrobial agents and immune system in microbial diseases	Analyze Level (C4)	
CO4 Explain the epidemiology of microbial diseases and their effect on global health		Understand Level (C2)	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Introduction, Human microbiome and health	2
2.	Diseases caused by microbes:	Diseases caused by bacteria, virus, fungus and parasites; host susceptibility; mechanism of their pathogenesis; Specific Virulence Factors	11
3.	Diagnostic methods	Microscopy, molecular and immunological diagnostics	11
4.	Antimicrobial agents and disease control	Targeting bacterial biological components; Drugs that Inhibit other Biochemical Targets; Bacterial Resistance; Combinations of Antimicrobial Agents; Gram positive and gram negative bacteria, virus (DNA and RNA) specific case studies; antimicrobial vaccines;	7
5.	Specific AcquiredImmunit y against pathogens	General Concepts; Basis of Acquired Resistance; Primary vs Opportunistic Pathogens; Protective Antigens; Immune Mechanisms; Preventive Immunity	8

6.	Global health and epidemiology	Chain of Infection; Epidemiologic Methods; Epidemic Investigation	3
Total number of Lectures		42	

Evaluation Criteria				
Components	Maximum Marks			
T1	20			
T2	20			
End Semester Examination	35			
ТА	25 (PBL, Class test, Assignment)			
Total	100			
Project based Learning: Students will choose a disease caused by microbe and inspect the pathogenesis and its commercial diagnosis (molecular and immunological methods).				

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	1. S. Baron, "Medical Microbiology"; https://www.ncbi.nlm.nih.gov/books/NBK7627/			
2.	P. Murray, K. Rosenthal, M. Pfaller, "Medical Microbiology", 9th Ed., Elsevier, 2020			
3.	3. FH Kayser, KA Bienz, J Eckert, "Medical Microbiology", Thieme			
4.	4. Selected Research articles			

IMMUNOLOGY AND IMMUNOTECHNOLOGY

Course Code	19M21BT116	Semester :Even	Semester: II Session: 2021-22 January - June
Subject Name	Immunology and Immunotechnology		
Credits	4	Contact Hours	4

Faculty	Coordinator(s)	Dr. Rachana
(Names)	Teacher(s) (Alphabetically)	Dr. Rachana, Dr. Shalini Mani

CO116.1	Explain the role of Immune system in human health and diseases.	(C2)
CO116.2	Apply immunological techniques for diagnosis of various diseases.	(C4)
CO116.3	Make use of antibody engineering for various applications.	(C3)
CO116.4	Apply the advanced Immunological principle and technology for clinical purposes.	(C3)

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Component of Immune system	Cells and organs of immune system, Innate immunity, adaptive immunity, B cell receptor, T cell receptor	6
2.	Regulation of immune response	Antigen presentation, MHC molecules, Cytokines, Complement systems	4
3	Diseases related to immune system	Autoimmune diseases, hypersensitivity reactions, Immune deficiency, cancer, infectious diseases.	5
4	Organ and tissue transplantation	HLA typing, graft rejection, graft acceptance, case studies.	3
5	Antibody engineering	Antibody diversity, Polyclonal antibody, Hybridoma Technology and its application, Humanized antibody, Phage display technology.	6
6	Immunotechnology	Theory, cross reactivity, precipitation reactions, agglutination reactions, ABO blood grouping, Ouchterlony, Western blotting, Elispot, immunofluorescence (IHC, FACS), ELISA, Kits for diseases. RIA	10
7	Vaccine Technology and its application	Adjuvants, live, attenuated, killed, inactivated, toxoids, recombinants, sub unit, conjugate and DNA vaccines	4

8	Immunotherapy	Passive immunization, activation of NK cells, T Cells, generation of antibody	4
Total num	ber of Lectures		42

Project based learning: Each student in a group of 4-5 will search the authentic scientific sites (NCBI/Sciencedirect/companies/labs) for the relevant articles/reports discussing application of Immunotechnology and will present/discuss the topic among the class students. Students would also discuss the medical reports of patients (collected from home/friends/internet) and will learn the basic methodology and parameters which are relevant to diagnose a particular disease.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Immunology (3 rd edition)
	Janus Kuby W.H. Freeman and company
2.	Essentials of Immunogy
	Ivan- Roit; 6 th edition (2017); Blackwell Publications
3.	Antibodies A laboratory Manual
	Harlow and David Lane, Old spring Harbor Laboratory
4.	Immunology – A Short Course,
	Richard Coico, et al. 5th Ed., Wiley – Liss, 2003.
5.	Immunology, 4th Ed
	Richard Hyde. Lippincott Wilkins & Wilkins, 2000.
6.	Microbiology & Immunology Online.
	Richard Hunt. Univ South Carolina, School of Medicine, http://pathmicro.med.sc.edu/book/immunol-sta.htm

MICROBIOLOGY LAB – II

Course Code	19M25BT112	Semester: Even (specify Odd/Even)		Semester: II Session: 2022-23Jan-June	
Course Name	Microbiology Lab – II				
Credits 4			Contact	Hours	8

Faculty	Coordinator(s)	Dr. Garima Mathur
(Names)	Teacher(s) (Alphabetically)	Dr. Smriti Gaur Dr Ankisha Vijay Dr. Garima Mathur Dr. Indira P. Sarethy Dr. Sonam Chawla Dr. Sujata Mohanty Dr. Vibha Gupta

COURSE OUTCOMES		COGNITIVE LEVELS
C170.1	Apply microorganisms for environmental remediation	C3 - Apply level
C170.2	Make use of microorganisms for production of industrially important enzymes and metabolites	C3 - Apply level
C170.3	Apply immunological principles for understanding of microbial diseases	C3 - Apply level
C170.4	Analyze and compare antimicrobial agents	C4 – Analyze level
C170.5	Compare pathogenic microbial genomes using computational tools	C4 – Analyze level

Module No.	Title of the Module	List of Experiments	CO
1.	Environmental Microbiology	Determination of enzyme activities as pollution indicator (e.g. esterase, lipase, dehydrogenases) in contaminated soil and water samples.	CO1
2.		Total coliform bacteria count in contaminated water samples from different locations	CO1
3.		Evaluating of health of agriculture soil (pH, Organic carbon, phosphorous, nitrate-nitrogen)	CO1
4.	Enzyme & Bioprocess Technology	Production of industrial enzymes using microbial cultures	CO2
5.		Enzyme kinetics	CO2
6.		Optimization of enzyme yield	CO2

7.	Immunology	Differential WBC counts	CO3
	&		
	Immunotechnology		
		Virtual Lab: Removal of spleen and thymus from mice and	CO3
8.		isolation of lymphocytes	
9.		Antigen- antibody interactions	CO3
10.	Medical	Antimicrobial activities of various medicinal plant extracts	CO4
100	Microbiology	using disc diffusion method	
11.		Determination of IC50 of various plant extracts	CO4
12.		Comparative analysis of pathogenic microbial genomes using	CO5
		computation tools	
Total			12
Evaluat	ion Criteria		
Components		Maximum Marks	
Mid Term Evaluation		20	
End Term Evaluation		20	
Day to Day Evaluation		60	
Total		100	
Project Based Learning : The students learn techniques in Microbiology Laboartory which are of Biotech industry relevance.			

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Aneja, K.R. (Eds.), Laboratory manual of microbiology and biotechnology, First, Delhi Meditec, 2014
2.	Siva, N., Taniwaki, M.H., Junqueira, V.C.A., Silveira, N.F.A., Okazaki, M.M., Gomes, R.A.R., Microbiological examination methods of food and water: a laboratory manual, Second,CRC Press Balkema, 2013
3.	Technological notes from industries