M.Tech Biotechnology Semester II

BIOPROCESS AND INDUSTRIAL BIOTECHNOLOGY

Course Code	17M11BT113	Semester Even (Specify Odd/I	ı Even)	Semeste Session	r II 2022-23
Course Name	BIOPROCESS & IN	ROCESS & INDUSTRIAL BIOTECHNOLOGY			
Credits	3		Contact H	Iours	3

Faculty	Coordinator(s)	DR. SONAM CHAWLA
(Names)	Teacher(s) (Alphabetically)	DR. SONAM CHAWLA, DR. GARIMA MATHUR

COUI	RSE OUTCOMES	COGNITIVE LEVELS
CO1	Relate role of economic principles in biomanufacturing processes	Understanding (C2)
GOA	Apply knowledge of engineering principles in designing of	Applying (C3)
CO2	bioreactors for prokaryotic and eukaryotic systems	
GOA	Analyze the role of bioprocess conditions in eukaryote cell	Analyzing (C4)
CO3	culture	
	Evaluate various strategies used for production of primary and	Evaluating (C5)
CO4	secondary metabolites	

Mod ule No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Industrial Bioprocesses	Concept of sustainability and sustainable manufacturing, Economic assessment and concept of cost and Lang factor; non-ideal systems of cultivating microorganism and economic process scale-up	3
2.	Microbial Process Development: Solid state fermentation	Cell growth kinetics of bacteria and fungi in non-ideal reactors; Concepts of solid-state fermentation; mechanism of cell growth and indirect methods of estimating cell growth kinetics, Comparison of solid <i>versus</i> submerged fermentation; water activity; bioprocess parameters regulating solid state fermentation	8
3.	Animal cell fermentation	Animal cell metabolism: Basic understanding of substrate and by-product stoichiometry, Concept of primary cells, cell lines and cancerous cells; growth characteristics and kinetics, methods and reactors for scalable	7

		production of animal cells and derived products; Biomaterial properties for anchorage dependent cell lines; Graf reactor; Concept of 2D and 3D culture, Bioreactors in Tissue		
4.	Plant Cell Fermentation	Engineering, reactor design consideration Importance of plant cell cultivation, Plant cell / hairy root culture, callus and shoot propagation, kinetics of cell growth and product formation, Reactors for plant cell culture- type of reactors, comparison of reactor performance, immobilized plant cell reactor.	8	
5.	Algal Fermentation	Basic classification of algae, Morphology and physiology; Algal derived metabolites, methods of studying growth kinetics of chemotropic and phototropic algae, type of reactors; Lab scale photo-bioreactors- Design and engineering principles, large scale pond reactors	6	
6.	ProductionofPrimary&SecondaryMetabolites	Isolation, preservation and propagation of microbial culture- An industrial perspective, Process technology for production of organics acids, amino acids, alcohols, antibiotics, vitamins, nucleotide and steroids, flavors; production of industrial enzymes: protease, cellulose, amylase, lipase; Enzyme inhibitors: inhibitors of cholesterol synthesis; biopesticides, biofertilizers, bio preservatives; biopolymers; plant derived therapeutically important metabolites	10	
		Total number of Lectures	42	
Evalu	ation Criteria			
Comp T1 T2 End So TA Total	emester Examination	Maximum Marks 20 20 35 25 (Class Test-1, Presentation / Report) 100		
Projec	Project based learning: Students will learn the economics attributes that help in designing			

Project based learning: Students will learn the economics attributes that help in designing economically viable biomanufacturing strategies. They will learn the concept, principles of solid-state fermentation, an industrially viable process for most microbial metabolites production. Students will be learning the advances in 2D and 3D culture, strategies used for production of scaffolds and implants

Reco Text b	nmended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
1.	P. M. Doran. Bioprocess Engineering Principles. Academic Press, USA, 2002
2.	S. J. Pirt. Principles of Microbe and Cell Cultivation. Blackwell Scientific Publications, Oxford

	Press, London, 1975
3.	P.F. Stanbury, A. Whittakar and S. J. Hall. <i>Principles of Fermentation Technology</i> . Butterworth-Heinemann, Oxford Press, London, 1994
4.	S. Aiba, A.E. Humphrey and N. F. Millis. <i>Biochemical Engineering</i> . University of Tokyo Press, Toyko, Japan, 1973
5.	A. H. Scragg. <i>Bioreactors in Biotechnology: A practical approach</i> . Ellis Horwood Publications, New York, USA, 1991
6.	Wulf Cruger and Anneliese Crueger. <i>Biotechnology: A Textbook of Industrial Microbiology</i> . Panima Publishing Corporation, New Delhi, India, 2003

DISEASES AND HEALTHCARE

Course Code	17M11BT114	Semester Even		Semest Session	er II Sem (MTech) 2022-23
Course Name	Diseases and Heal	thcare			
Credits	3		Contact	Hours	3

Faculty	Coordinator(s)	Dr. Reema Gabrani
(Names)	Teacher(s) (Alphabetical ly)	Dr. Reema Gabrani

COURSE OUTCOMES		COGNITIVE LEVELS
C115.1	Explain the etiology, pathogenesis of infectious diseases and genetic disorders.	Understand Level (C2)
C115.2	Choose and apply the strategies of different diagnostic tests.	Apply Level (C3)
C115.3	Utilize expression systems and mutagenesis techniques for biopharmaceuticals production	Apply Level (C3)
C115.4	Appraise biotechnology principles for production of recombinant proteins and nucleic acids as therapeutic agents	Evaluate Level (C5)

Module No.	Title of the Modul e	Topics in the Module	No. of Lectures for the module
1.	Introducti on to diseases	Infectious diseases caused by bacteria, viruses, opportunistic fungi and parasites; pathology	3
2.	Genetic diseases	Medical genetics; Genetic mechanisms leading to diseases such as thalassemia, cancer	3
3.	Diagnosis of bacteria and virus	Challenges of pathogen detection; Pathogen Detection using Cytological, biochemical and molecular methods; Molecular cytogenetics, PCR variants	8
4.	Immunodiagnos tics	Immuno-diagnostics: immunofluorescence, Chemiluminescence, Microparticle Enzyme immunoassay, Fluorescence polarization immunoassay Applications in bacteriology, medicine, forensic sciences	4

~	C		
5.	Cancer	Cancer cytology analysis, genetic and epigenetic	3
	diagnostics	Biomarkers	
6.	Diagnosis in	Forensic DNA typing and data analysis, Next	3
	Forensic	generation sequencing technology and applications	
	science		
7.	Engineering of	Scientific and technological innovations in	3
	Therapeutical	biopharmaceuticals production, Mutagenesis	
		techniques	
8.	Manipulating	Prokaryotes, yeast, baculo-virus and mammalian cells	5
	Host systems	for production of recombinant proteins	
9.	Therapeutic	Recombinant blood related products, hormones,	8
	applications	interleukins, Vaccines, Monoclonal antibodies and	
		Therapeutic enzymes	
10	Nucleic acid	Antisense oligodeoxynucleotides, ribozyme,	2
	therapeutics	interfering RNAs, aptamers as therapeutical	
Total n	umber of Lectures	· - · ·	42

Evaluation Criteria	
Components	Maximum Marks 20
T1 T2	20
End Semester	35
Examination	25 (Assignments) (PBL)
Total	100
PBI · Student will choose	commercially available protein/ hiotechnologically d

PBL: Student will choose commercially available protein/ biotechnologically derived product and inspect the synthesis, purification, final product, and its market.

Recor books	nmended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text , Reference Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Yi-Wei Tang & Charles W Stratton, "Advanced techniques in Diagnostic microbiology", 2 nd Ed. Springer 2013
2.	G. Walsh, "Biopharmaceuticals: Biochemistry and Biotechnology", 2nd Ed. John Wiley & Sons publication 2013
3.	Rodney J. Y. Ho Ph.D., FAAAS, FAAPS, Milo Gibaldi Ph.D. "Biotechnology and Biopharmaceuticals: Transforming Proteins and Genes into Drugs" John Wiley & Sons Inc. 2013
4.	Refereed papers from scientific journals for case studies

NUTRACEUTICALS

Course Code	17M12BT112	Semester: Ever	Semester: II Session: 2022	nd 2-23
Course Name	Nutraceuticals			
Credits	3	(Contact Hours	3

Faculty	Coordinator(s)	Dr. Smriti Gaur
(Names)	Teacher(s) (Alphabetically)	Dr. Smriti Gaur

COURS	SE OUTCOMES	COGNITIVE LEVELS
CO1	Compare the traditional and modern trends in the nutraceutical Industry.	(C2)
CO2	Evaluate the mechanism of action of micronutrients and phytochemicals in prevention of chronic diseases.	(C3)
CO3	Explain the health benefits of microbial and algal nutraceuticals	(C2)
CO4	Compare nutraceuticals and health food products in Indian and international market.	(C4)

Module	Title of the Module	Topics in the Module	No. of Lectures
No.			for the module
1.	Nutraceuticals and Functional Food: An Introduction	Historical perspective, classification, scope & future prospects. Applied aspects of the Nutraceutical Science. Sources of Nutraceuticals, The link between nutrition and medicine.	4
2.	Nutrient Components of Food	Bioactive Carbohydrates: Polysaccharides, Soluble Fibers, Insoluble Fiber, Resistant Starch, Prebiotics, Slowly Digestible Starch. Bioactive Lipids: MUFA, PUFA, Omega 3 and 6 Fatty Acid, Conjugated Linoleic Acid (CLA). Bioactive Peptides: Sources, Isolation and Purification methods. Antihypertensive, Antioxidant, Antimicrobial, Anticancer and immunomodulating Peptides.	10
3.	Nutraceuticals of Plant Origin	Plant secondary metabolites, classification and sub-classification – alkaloids, phenols, Terpenoids, uses and Preventive role in diseases.	5
4.	Nutraceuticals of	Animal metabolites - Examples: Chitin. Chitosan.	5

	Animal Origin	Glucosamine, Chondroitin Sulphate, uses and applications in preventive medicine and treatment.	
5.	 5. Microbial and Algal Nutraceuticals Concept of probiotics - principle, mechanism, production and technology involved and health benefits of probiotics. Symbiotic for maintaining good health. Algae as source of omega - 3 fatty acids, proteins, fibers, antioxidants, vitamins and minerals – examples: Chlorella, Haematococcus, Spirulina, Dunaliella 		
6.	Nutraceuticals and Diseases (specific foods and food products)	Tea, Garlic, Honey, Flaxseed, Mushroom, Barley, Grape seed extract and Lycopene and their preventive role in cardiovascular diseases, Metabolic disorders, Cancer, Bone health, skin diseases etc.	8
7.	Nutraceutical Industry and Market Information	Concept of cosmeceuticals and aquacultural, Nutraceutical industries in India and abroad (study of 5 reputed Indian and International industries involved in production and development of nutraceuticals and functional foods).	4
Total nu	mber of Lectures		42
Evaluati	on Criteria		
Compon T1 T2 End Sem TA Total	ents ester Examination	Maximum Marks 20 20 35 25 (Assignment, report and viva) 100	
Project industries prepare t industry, prospects This wou	based learning: Each s involved in production the report and give a p product processing, n s etc. This will enhance and help their employable	student in a group of 2 will study 5 reputed Indian on and development of nutraceuticals and functional resentation and will discuss the various products manufacturing, applications, health benefits, market e the student's understanding about various Nutrace ility into the nutraceutical sector.	and International foods. They will anufactured by the t information, job euticals industries.

mended Reading material. Futuol(3), The, Edition, Tubisher, Tear of Tubication etc.
ooks, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
Vildman, R.E.C. ed. Handbook of Nutraceuticals and Functional Foods, CRC Press, Boca
aton, 2000.
. E. Aluko, Functional foods and Nutraceuticals, Springer, 2012
ashwant V Pathak, Handbook of Nutraceuticals, CRC Press, 2010
hibamoto T. Functional food and health, Oxford University Press, 2008.
oldberg, I. Functional Foods: Designer Foods, Pharma foods, Nutraceuticals, Chapman &
fall, 1994.
obert E.C. Handbook of Nutraceuticals and Functional Foods. 2 nd Ed. Wildman, 2006.

BIOTECHNIQUES LAB-II

Cours Code	se	17M17BT112	Semester Even (Specify Odd/	n Even)	Semeste Session	er II 2023	-24	
Cours Name	se	Biotechniques La	b-II		I			
Credi	ts	3		Contact	Hours		6	
Facul	ty	Coordinator(s)	Dr Pooja Chou	dhary				
(Namo	es)	Teacher(s) (Alphabetically)	Dr. Vibha Gup	ta, Dr. A	shwani M	lathur	r, Dr. Sudha Srivastava,	
COUI	RSE (OUTCOMES					COGNITIVE LEVELS	
CO1	Exp	eriment with high end	analytical techni	ques in b	oiotechnol	ogy	Apply (Level C3)	
CO2	Dev	elop basic and applied	skills in cell cul	ture			Apply (Level C3)	
CO3	Exa	mine and analyse disea	ase-specific drug	targets			Analyze (Level C4)	
CO4	Ana	lyse bioactive compou	inds from plant a	nd micro	bial syste	ms	Analyze (Level C4)	
Modu No.	le T	Title of the Module	List of Experiments			CO		
1.	A	Analytical techniques	To run High-per prepare and ana of plant extract	formanc lyze curc	e liquid cl umin extr	hroma act b	atography (HPLC); y HPLC; purification	3
2.	C te	Cell culture echniques	Preparation and subculture of a adherent cells; c	d steriliz animal co cell cytoto	zation of ell lines; oxicity de	me anal termi	dia for cell culture; ysis and counting of nation	3
3.	D	Drug target analyses	SDS-PAGE ana	lysis and	fluoresce	ent sta	ining	3
4.	N a	Vatural product nalyses	Extraction of antioxidant compound from <i>in vitro</i> grown plant and bacteria; purification of compound; antioxidant capacity analyses of extracts			3		
Evalu	ation	Criteria						
ComponentsMaximum MarksMid-Term Viva20Day-to-Day (Lab record, attendance, performance)60Final Viva20								

Project Based Learning: The students learn HPLC, cell culture techniques, natural products characterization, which are required for Biotech and pharmaceutical industry.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc.

(Te	ext books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Biotechnology Procedures and Experiments Handbook http://site.iugaza.edu.ps/mwhindi/files/BIOTECHNOLOGY-PROCEDURES-AND- EXPERIMENTS-HANDBOOK.pdf
2.	Cornelia Kasper, Verena Charwat, Antonina Lavrentieva, "Cell Culture Technology" Springer, 2018
3.	ChukwuebukaEgbuna, Jonathan ChinenyeIfemeje, Jaya Vikas Kurhekar, Stanley Chidi Udedi, Shashank Kumar, "Phytochemistry Volume 2" Apple Academic Press, 2019
4.	Methods standardized in lab
5.	Lab manual on Biotechniques http://inpressco.com/lab-manual-on-biotechniques/

PROJECT BASED LEARNING- I

Project based learning-1 (17M17BT112) - Dr. Ashwani Mathur							
Project-Based	Project-Based Learning - I (M.Tech II Sem Student &M.Tech (Integrated) XI Sem)						
Viva- I / Mid 7	Viva- I / Mid Term Viva: 30 Marks						
Viva-II / End	Viva-II / End Term Viva: 30 Marks						
C216.1 Select Applying Vive I (Detional of the Evit Survey)							
C210.1	biotechnolo	Apprying	study) - 10 Day to Day	Exit Survey			
	gical	Level III	(Rational of the study) - 5				
	problems	Leverm	(Rudonal of the study) -				
	based on						
	literature						
C216.2	Interpret	Evaluate	Viva I (Problem statement)	Exit Survey			
	scientific	level	-5 Marks; Day to Day				
	data to	Level V	(Problem statement) -5				
	address the		Marks;				
	diotecnnolo		Vive II (Decign of recentral				
	problem		strategy for identified				
	problem		problem / Elaboration of				
			case studies / Literature				
			reviewed) – 5 Marks, Day				
			to Day marks from				
			supervisor(Design of				
			research strategy for				
			Identified problem /				
			Liboration of case studies				
			Marks				
C216.3	Design	Evaluate	Viva-I (Literature review)	Exit Survey			
	Research	level	- 15 Marks, Day to Day				
	strategy for	Level VI	from Supervisor				
	identified		(Literature Review) – 5				
	problem		Marks				
			Vive H (Analysis and				
			interpretation of result /				
			Analysis of results from				
			literature / Survey outcome)				
			- 10 Marks, Day to Day				
			Marks from Supervisor				
			(Analysis and interpretation				
			of result / Analysis of				
			results from literature /				
			Survey outcome) -10				
C216.4	Analyze	Analyzing	Viva-II (Conclusion /	Exit Survey			

and present	Level IV	Learning Outcome, Report)	
the research		– 15, Day to Day marks	
finding		from Supervisor	
		(Conclusion / Learning	
		Outcome, Report) – 10	
		Marks	

Project based learning: The students perform lab based, in-silico, experimental and systematic review or survey based analysis to define the problem statement and learn biotechnological and allied approaches to answer the problem statements. Such knowledge help student to develop independent thinking and inculcate the practice of following good laboratory, scientific and ethical practices in their career.

IPR IN BIOTECHNOLOGY

Course Code	18M12BT116	Semester Eve (Specify Odd	en /Even)	Semest Session	er II 2022-23
Course Name	IPR in Biotechnology				
Credits	3		Contact	Hours	3
Faculty	Coordinator(s)	Prof. Shweta Dang			
(Names)	Teacher(s) (Alphabetically)	Prof. Indira P. Sarethy, Prof. Shweta Dang			
COURSE OUT(COGNITIVE	

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Explain and interpret the types of intellectual property rights, related laws and systems	Understand (C2)
CO2	Apply specific IPR issues pertaining to medical biotechnology	Apply (C3)
CO3	Evaluate plant and traditional knowledge protection	Evaluate (C5)
CO4	Appraise commercialization of intellectual property, infringements and laws applicable	Evaluate (C5)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Intellectual Property Rights - their Relevance, Importance and Business Interest to Industry, Academia, Protection of Intellectual Property, Relationship of IPRs with biotechnology	2 [CO1]
2.	Types of Intellectual Property Rights	Patents, Trademarks, Copyrights, Industrial Designs, Geographical Indications, Trade secrets, non- disclosure agreements	2 [CO1]
3.	Patents	General Introduction to Patents, Patent Terminology, Patent Claims, Patent Life and Geographical Boundaries, Utilization of Intellectual Patents, Licensing of patents	4 [CO1, CO2]
4.	Elements of patentability	Invention/Discovery, what constitutes Patentable subject matter, the Utility, novelty and non- obviousness of an invention, Patentability in Biotechnological Inventions: Case studies	2 [CO2, CO3]

5.	Preparation and Process for Patenting	Procedural steps to grant of a patent, Process of filing patents in India, PCT application, protocols of application, pre-grant & post-grant opposition	3 [CO2, CO3]
6.	Patent Search	Invention in context of "prior art", Patent Search methods, Patent Databases & Libraries, online tools, Country-wise patent searches (USPTO, EPO, India etc.), patent mapping	2 [CO2, CO3]
7.	IPR laws	Basic features of the Indian Patent Act, the Indian Copyright Act, and the Indian Plant Varieties Protection and Farmers' Rights Act, A brief overview of other Patent Acts & Latest Amendments of Indian, European & US patent systems	2 [CO1, CO2, CO3]
8.	Patent issues in Drugs and Pharmaceuticals	Generics, Compulsory Licensing, Exclusive Marketing Rights (EMR), Bolar provision, Bayh-Dole act, Second medical use	2 [CO2, CO3]
9.	Worldwide Patent Protection, WTO & TRIPS Agreement	Brief Background of different international conventions such as Paris convention, TRIPS, WTO, PCT and Patent Harmonization including Sui-generis system, the relationship between IPRs and international trade, Overview of WTO & TRIPS Agreement, Enforcement and dispute settlement under the TRIPS Agreement, the implication of TRIPS for developing countries in the overall WTO system	2 [CO1, CO2, CO3]
10.	Gene patents	Introduction & overview, what constitutes gene patents, Bayh-Dole Act, ESTs, Cohen-Boyer technology, PCR patents, EPO case, BRCA gene, Types of IPR involved, Genetic Use Restriction Technologies, Patenting of biologics, Hatch Waxman Act	9 [CO3, CO4]
11.	Protection of Plant Varieties /Seeds	The interface between technology and IPRs in the context of plants, Key features of UPOV 1978, UPOV 1991 and TRIPS with respect to IPRs on plants, Indian Law on Protection of Plant Varieties, DUS criteria, patenting of genetically modified plants, The significance of IPRs in agricultural biotechnology, Biodiversity, Conventions & Treaties, plant patents, Plant Varieties Protection Act, Plant Breeders' Rights, UPOV, benefit sharing, <i>sui generis</i> systems Case studies	4 [CO3, CO4]
12.	Traditional Knowledge and Intellectual Property Rights	The importance and relevance of Traditional Knowledge for developing nations, the various approaches to protecting TK, The local, national and global dimensions of the issues in TK and IPRs, Traditional Medicine & IP Protection, Folklore, Patenting of Health Foods: Case studies	4 [CO3, CO4]
13.	Patent Infringement and	What all are considered as patent Infringement: Case studies, defenses to infringement including experimental use, patent misuse, legal considerations.	4 [CO4]

	Commercializing Intellectual Property Rights	Patent Valuations, Competition and Confidentiality issues, Assignment of Intellectual Property Rights, Technology Transfer Agreements		
		Total number of Lectures	42	
Evaluatio	n Criteria			
Compone	nts	Maximum Marks		
T1 -		20		
T2		20		
End Seme	ster Examination	35		
ТА		25 (Assignments 1 (PBL based 5 Marks), Assignments 2.		
Presentatio	on 1)			
Total		100		
PBL: Stud UPTO and	lents will be given k l they can analyze th	eywords to do art search from free patent databases like get types of patents filed under various domains.	google patents,	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	USPTO Web Patent Databases at: www.uspto.gov/patft
2.	Government of India's Patents Website: patinfo.nic.in
3.	Intellectual property India: www.ipindia.nic.in
4.	"Indian Patent Law: Legal and Business Implications" by AjitParulekar, Sarita D'Souza Macmillan India publication, 2006
5.	"Agriculture and Intellectual Property Rights", edited by: Santaniello, V., Evenson, R.E., Zilberman, D. and Carlson, G.A. University Press publication, 2003
6.	Research papers and Reports provided from time to time

Subject Code	19M13HS111		Semester: Even	Semester: M.Tech II & Dual degree VIIISession 2022-23 Month from January to May 2023
Subject Name	English Language Sk		lls for Research Paper Writing	
Credits	2		Contact Hours	2-0-0
Faculty (Names)	Coordinator(s) Dr.		: Ekta Singh	
	Teacher(s) (Alphabetically)Dr.		Ekta Singh	

ENGLISH LANGUAGE SKILLS FOR RESEARCH PAPER WRITING

Course Outcomes:

At the completion of the course, students will be able to,

COURSE O	UTCOMES	COGNITIVE LEVELS
C204.1	Demonstrate an understanding of all the aspects of grammar and language needed to write a paper.	Understand Level (C2)
C204.2	Apply grammatical knowledge & concepts in writing and presentation.	Apply level (C3)
C204.3	Examine each section of a paper after careful analysis of Literature Review.	Analyze Level (C4)
C204.4	Determine the skills needed to write a title, abstract and introduction, methods, discussion, results and conclusion.	Evaluate Level (C5)
C204.5	Compile all the information into a refined research paper after editing and proofreading	Create Level (C6)

Module No.	Subtitle of the Module	Topics in the module	No. of Lecturesand Tutorials for the module
1.	Grammar & Usage	Structure of English Language Voice, Aspect & Tense SVOCA Sense & Sense Relations in English Enhancing Vocabulary Connotation, Denotation & Collocation	6
2.	Elements of Paper Writing	Planning & Preparation Word Order Breaking Long Sentences Structuring Paragraphs Being Concise and RemovingRedundancy Avoiding Ambiguity and Vagueness	4
3.	Paraphrasing & Writing	Highlighting Your Findings Hedging andCriticising Paraphrasing and Plagiarism Sections of a Paper Abstracts; Introduction	6
4.	Process of Writing	Review of Literature Methods Results Discussion	4

		Conclusion The Final Check	
5.	Key Skil Needed	 Key skills needed when writing a Title Key skills needed whenWriting an Abstract Key skills needed when writing an Introduction Key skills needed when writing a Review of the Literature Key skills needed when writing Methods & Results Key skills needed when writing Discussion & Conclusion 	4
6.	Refining the Paper	 Incorporating useful phrases Editing Proofreading References Annexures Ensuring good quality in submission 	4
	28		

 Evaluation Criteria

 Components
 MaximumMarks

 Mid Term
 30

 End Semester Examination
 40

 TA
 30 (Project, Assignment/ Class Test/ Quiz, Class Participation)

 Total
 100

3. Employability/entrepreneurship/skill development

Researchers whose first language is not English write at least two-thirds of published scientific papers. Twenty percent of the comments referees make when reviewing papers for possible publication in international journals regard English language issues. In some disciplines, acceptance rate by journals of papers originating from the US/UK is 30.4%, and is higher than all other countries

Publishing your research in an international journal is key to your success in academia. This course is based on a study of some sample manuscripts and reviewers' reports revealing why papers written by non-native researchers are often rejected due to problems with English usage and poor structure and content. The course prepares the students on how to:

• prepare and structure a manuscript

• increase readability and reduce the number of mistakes you make in English by writing concisely, with no redundancy and no ambiguity

- write a title and an abstract that will attract attention and be read
- decide what to include in the various parts of the paper (Introduction, Methodology, Discussion etc)
- highlight your claims and contribution
- avoid plagiarism
- discuss the limitations of your research
- choose the correct tenses and style
- satisfy the requirements of editors and reviewers

Recommended R	Recommended Reading material:			
1.	Goldbort R. 'Writing for Science', Yale University Press (available on Google Books), 2006			
2.	Day R. 'How to Write and Publish a Scientific Paper', Cambridge University Press, 2006			
3.	Adrian Wallwork. 'English for Writing Research Papers', Springer, New York, Dordrecht Heidelberg, London, 2011			
4.	Yadugari M.A. ' Making Sense of English: A Textbook of Sounds, Words & Grammar' Viva Books Private Limited, New Delhi, 2013, Revised Edition			
5.	Strauss Jane. 'The Blue Book of Grammar and Punctuation, Josseybass, Wiley, San Francisco, 1999.			
6.	Rizvi, A. R. 'Effective Technical Communication' 2nd edition, McGraw Hill Education Private Limited, Chennai, 2018			
7.	Eckert, K. 'Writing Academic Paper in English:Graduate and Postgraduate Level', Moldy Rutabaga Books, 2017			
8	Barros, L.O, 'The Only Academic Phrasebook You'll Ever Need: 600 Examples of Academic Language' Create Space Independent Publishing Platform; 1st edition,2016			
9	Wallwork, A. 'English for Writing Research Papers (English for Academic Research)'.Springer; 2nd ed. 2016 edition.			
10	Wallace,M&Wray,A. 'Critical Reading and Writing for Postgraduates (Student Success) SAGE Publications Ltd; Third edition, 2016			
11	Butler, L. 'Longman Academic Writing Series 1: Sentences to Paragraphs, with Essential Online Resources', Pearson Education ESL; 2nd edition,2016			
12	Saramäki, J. 'How to Write a Scientific Paper: An Academic Self-Help Guide for PhD StudentsIndependently published, 2018			

NANOBIOTECHNOLOGY

Subject Code	17M12BT125	Semester Even (specify Odd/Even)	Semester Integ MTech VIII/ MTech II Month from Jan to June	Session 2022-23			
Subject Name	Nanobiotechn	Nanobiotechnology					
Credits	3	Contact Hours	3				

Faculty (Names)	Coordinator(s)	1.	Prof. Sudha Srivastava
	Teacher(s) (Alphabetically)	1. 2.	Prof. Sudha Srivastava Prof. Shweta Dang
COs	Cos description		Level
CO111.1	Understand nanoparticles, their properties, characterization techniques and associated health hazards		Understand Level 2
CO111.2	Apply concepts of nanotechnology in healthcare, agriculture and environment		Apply level 3
CO111.3	Explain nanotechnological advancements for development of cutting edge technologies		Understand Level 2
CO111.4	Apply Nano-carrier based Drug Delivery to clinical pharmacokinetics	Aŗ	oply level 3

Module No.	Subtitle of the Module	Topics in the module	# of Lectures		
1.	Introduction to Nanotechnology	Introduction to Nanomaterials; Properties of Nanomaterials; Methods of Nanomaterials Synthesis	6		
2.	Characterization Techniques	X-ray Diffraction (XRD analysis) Transmission Electron Microscopy (TEM), Scanning Electron Microscopy(SEM)	4		
3.	Nanotechnology in Healthcare	Applications of nanoparticles in Healthcare : Imaging, bone regeneration, tissue engineering, Medical and Environmental	9		
4.	Nanoparticles based Drug-Delivery Systems	Formulations, characterization techniques, Pharmacokinetics and Pharmacodynamics of Nano-carriers for Drug delivery: Lipid- based nanoparticles, Polymer-based nanoparticles, nanoemulsions, Micelles, Lipoplexes and polyplexes, protein nanoparticles	14		
5.	Novel bio-technologies employing nanoparticles	DNA sequencing using nanopores; Nanoparticles in PCR; Magnetic nanoparticles in SNP detection.	4		
6.	Environmental and health hazards of nanotechnology	Sources – Anthropogenic and Natural nanomaterials; Environmental Risks; Health Risks – Nanoparticles toxicity, Routes of exposure, translocation and elimination.	6		
Total number of Lectures			42		
PBL: Stu	PBL: Students will make a report and present the nanotechnological solutions for healthcare/industrial				

biotechnology/environmental issues/problems

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Nanostructures and Nanomaterials: Synthesis, Properties and Applications; G. Cao, Imperial College Press.		
2.	Nanobiotechnology in Molecular Diagnostics: Current Techniques and Applications, K.K. Jain, Horizon Bioscience.		
3.	Nanostructures for Drug Delivery: EcaterinaAndronescu, Alexandru Mihai Grumezescu, Elsevier, 2017		
4.	Recent Research articles		