Detailed Syllabus (Lecture-wise Breakup)

(Lecture-wise Dicakup)						
Course Code		15B11EC411	Semester EVENSemester 4(specify Odd/Even)Month from		er 4 th Session 2022 -2023 from Jan to June	
Course N	ame	ANALOGUE ELEC	TRONICS			
Credits		3		Contact I	Contact Hours 3-0-0	
Faculty		Coordinator(s)	Dr. Ajay Kum	ar, Dr. Bhai	tendu Cha	aturvedi
(Names)		Teacher(s) (Alphabetically)	Dr. Ajay Kumar, Dr. Bhartendu Chaturvedi, Mr. Shivaji Tyagi			
COURSE	E OUTCO	OMES				COGNITIVE LEVELS
C213.1	C213.1 To analyse biasing and frequency response of MOS based amplifiers.			of differen	nt BJT ar	nd Understanding Level (C2)
C213.2 Explain current		a and analyze basic structures of differential amplifiers and mirrors.		nd Analyzing Level (C4)		
C213.3 Explain of vario		n the effect of feedback on amplifier characteristics and design ous types of oscillators.			gn Understanding Level (C2)	
C213.4 Apply I application		basic understanding of operational amplifier to design various tions.			us Applying Level (C3)	

Module No.	Title of the Module	Topics in the Module (yellow highlighted part shows the content covered in PBL CO3, CO4, CO5)	No. of Lectures for the module
1.	BJT Amplifier	Single stage (CE, CB, CC), Small-Signal Model, Multistage: CE-CE, Cascode, Darlington-pair, high (hybrid- π) frequency model, Frequency Response of CE Amplifier, Gain-bandwidth product, CE short circuit current gain	10
2.	Introduction of MOSFET and analysis of MOS amplifier	Introduction of MOSFET, characteristics and basing (voltage and current), small signal models: common source, common gate and common Drain, high frequency model and Frequency Response of CS amplifier	8
3.	Basic Building Blocks of Op-amp (BJT and MOS)	Basic Building Blocks of Op-amp: Basic differential pair, large and small signal analysis of differential amplifier, differential amplifier with active load, current mirror	11
4.	Feedback	Four basic feedback topologies: series-shunt, series-series, shunt-shunt, shunt-series, Barkhausen stability criterion for oscillators, Sinusoidal oscillators, RC Phase shift oscillator, Wien bridge oscillator	6
5.	Measurement of Op-amp parameters	Measurement of Op-Amp: Output Offset Voltage, Input offset voltage, Input Bias, Offset Current, Input current, CMRR, Slew rate, Open loop and closed loop gain, PSRR.	3
6.	Application of Op- Amp	Comparators, Schmitt trigger, Waveform generator (square wave, triangular wave), Instrumentation amplifier.	4
		Total number of Lectures	42

Project based learning: In this course, using BJT and MOSFETs we analyse and design various circuits such as single stage, multi-stage amplifiers, operational amplifiers, oscillators and comparators and waveform generators. The PBL assignment is based on the simulation of above mentioned circuits using SPICE simulator. In this process, students may transform theory into their own knowledge and improve their ability of independent thinking, analyzing and solving various problems.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	A. S. Sedra & K.C. Smith, Microelectronic Cicruits Theory and Application, 6th Edition, Oxford University Press, 2011
2.	Donald Neamen, Microelectronic Circuit Analysis and Design, 4th Edition, Mc Graw Hill
3.	R. A. Gayakwad, Op Amp and Linear Integrated Circuit Technology, 3 rd Edition, Prentice-Hall India, 1999.

Detailed Syllabus Lab-wise Breakup

Course Code	15B17EC471	Semester: EV	EN	Semeste	er 4 th	Session 2022-23
		(specify Odd/	Even)	Month	f rom Janua	ry to June
Course Name	Analogue Electronics Lab					
Credits	its 1		Contact Hours 0-0-2			0-0-2
			· 1D			1'
Faculty (Names)	Coordinator(s)	Mr. Shivaji Ty	agi and Dr.	Bhartend	u Chaturve	d1

Teacher(s)	Dr. Ajay Kumar, Dr. Archana Pandey, Dr. Bhartendu Chaturvedi, Dr.
(Alphabetically)	Garima Kapur, Mr. Shivaji Tyagi

COURSE	DESCRIPTION	COGNITIVE
OUTCOMES	At the end of the course, students will be able to:	LEVELS
C275.1	Plot the transient, frequency response of the first-order RC circuit using SPICE/MULTISIM and analyze the bias points for BJT.	Analyzing Level (C4)
C275.2	Analyze and plot the frequency response of single-stage BJT/MOS amplifiers	Analyzing Level (C4)
C275.3	Analyze and implement the BJT based current mirrors	Analyzing Level (C4)
C275.4	Analyze and determine the differential gain, common-mode gain and CMRR of BJT based differential amplifier and implement the Op-Amp circuits to use it in different applications.	Evaluating Level (C5)

Module No.	Title of the Module	List of Experiments	СО
1.	Introduction and demonstration of Simulation tool with suitable example	Installation of PSPICE/MULTISIM light version on GPL with operating instructions. Simulate transient and frequency response of first-order RC circuit for the input of sine and square waveform.	C275.1
2.	Study and Analyzing Biasing Techniques	Implement/simulate the dependence of β_{dc} on the collector bias current for the given discrete BJT transistor BC547B/Q2N2222A using breadboard and/or SPICE/MULTISIM simulator.	C275.1
3.	Study and Analyzing Biasing Techniques	Implement/simulate using SPICE/MULTISIM simulator the voltage biasing techniques such as voltage divider, collector to base bias and fixed bias for DC "Q-point" stability using BJT transistor BC547B/Q2N222A.	C275.1
4.	Large signal and small-signal analysis of CE amplifier	Implement/simulate using SPICE/MULTISIM simulator the single- stage CE amplifier circuit to determine the instantaneous node voltages and branch currents for triangular input $v_{in} = 1.0V$ (p-p) using a discrete BJT transistor. Also, determine the maximum amplitude of v_{in} which is allowed to be used in the amplifier.	C275.2
5.	Design of BJT based amplifier	Implement/simulate using SPICE/MULTISIM simulator a single stage BJT amplifier for given specifications.	C275.2
6.	Frequency Response of	Implement/simulate using SPICE/MULTISIM simulator the frequency response of the Common Source amplifier using N-channel MOSFET. Determine	C275.2

	Amplifier	a) Upper, lower 3-dB frequency b) Bandwidth				
7.	Current Mirror	Design and implement/simulate a basic BJT current mirror using a discrete transistor for reference current of 1mA using SPICE/MULTISIM simulator.	C275.3			
8.	Current Mirror	Implement/simulate a Wilson current mirror output current of 1mA using SPICE/MULTISIM simulator.	C275.3			
9.*	Differential Amplifier	 Implement/simulate using SPICE/MULTISIM simulator a single-stage differential amplifier and determine the following: a) Frequency response of differential gain A_d. b) Frequency response of common-mode gain A_{CM}. c) Common Mode Rejection Ratio (CMRR). 	C275.4			
10.	Applications of OP-AMP	Implement/simulate using SPICE/MULTISIM simulator and validate applicability of Op-Amp using 741 IC in different applications	C275. 4			
11.	Analyze RC Filters	Virtual Lab: Analyze and design RC circuit based Low pass and High Pass filters (http://vlabs.iitkgp.ac.in/be/exp14/index.html)	C275.1			
12.	Study and Analyze BJT Amplifier	Virtual Lab: Study and analyze of BJT CE amplifier (http://vlabs.iitkgp.ac.in/be/exp13/index.html)	C275.2			
13.	Applications of OP-AMP	Virtual Lab: Study of different applications of Op-Amp (http://vlabs.iitkgp.ac.in/be/exp17/index.html#) (http://vlabs.iitkgp.ac.in/be/exp18/index.html) (http://vlabs.iitb.ac.in/bootcamp/labs/ic/exp4/exp/simulation.php)	C275.4			
Evaluatio	on Criteria					
Compone Mid Viva End Viva Day to Da	ents 1 1 ay	Maximum Marks 20 20 60				
			1/ 1/ \			
Project-Based Learning: This Lab course starts with the introduction and demonstration of simulation tool(s) such as MULTISIM/PSPICE. Furthermore, the experiments of this Lab course also help students to analyze and design BJT and MOS based important analogue structures by means of simulation tools such as MULTISIM/PSPICE. Small groups of three or four students work in cooperation using PBL techniques to solve design-oriented experiments. Students' opinions have been obtained by means of a course exit survey at the end of the course.						

* These are advanced-level experiments.

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Textbooks, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	A. S. Sedra & K.C.Smith, Microelectronic Circuits Theory and Application, 6th Edition, Oxford University Press, 2015(Text Book)					
2.	Marc Thompson, Intuitive Analog Circuit Design, 2nd Edition, Elsevier Publication, 2013					

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B11EC413	Semester Even		Semester IVSession2022 - 2023Month fromJan to June			
Course Name	DIGITAL SIGNAL P	PROCESSING					
Credits 4			Contact Hours			4	
Faculty (Names)	Coordinator(s)	Sajaivir Singh, Vineet Khandelwal					
	Teacher(s) (Alphabetically)	Madhu Jain					

COURSE	OUTCOMES	COGNITIVE LEVELS
C215.1	Recall the principles of z-transforms, explain the DFTs (Discrete Fourier Transform) and develop FFT (Fast Fourier Transform) algorithms for DFT.	Applying (C3)
C215.2	Construct and Analyze the digital FIR (Finite Impulse Response) and IIR (Infinite Impulse Response) filters.	Analyzing (C4)
C215.3	Demonstrate multi-rate signal processing and relate DSP (Digital Signal Processing) in various applications.	Understanding (C2)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Review of Discrete time Signals and Systems	Review of discrete-time sequences and systems, discrete time system analysis using Z transform.	3
2.	Discrete Fourier Transform and FFT	Discrete Fourier Transform (DFT) and its properties, Linear filtering methods based on DFT, Frequency analysis of signals using the DFT, Fast Fourier Transform (FFT) algorithms using decimation in time and decimation in frequency techniques.	11
3.	FIR Filter design	Basic structures of digital filters; Significance of Linear phase response, FIR filters design - Frequency sampling and Windowing techniques, Computer aided design.	8
4.	IIR Filter design	Approximation of filter functions: Butterworth, Chebyshev, Elliptic; IIR filter design based on analog filter functions- Impulse Invariant and modified invariant response techniques, Bilinear transformation method.	10
5.	Multi-rate Digital Signal Processing	Decimation & Interpolation, Filter design with sampling rate conversion by a rational factor I/D	5
6.	DSP Applications	Applications in speech and image processing, and power	7

	spectrum estimation.		
		Total number of Lectures	44
Evaluation Criteria			
Components	Maximum Marks		
T1	20		
T2	20		
End Semester Examination	35		
ТА	25		
Total	100		

Project based learning: Students will learn different techniques used for the generation, transformation, extraction and interpretation of information via discrete signals which is essential for smart phones, home appliances, healthcare devices, cameras and in general for many digital systems. Student shall be given various practical situation-based design exercises to be implemented in MATLAB or OCTAVE. This would enable them to recall and apply various techniques and algorithms taught in course to design and analyse the required system that meets the given technical specification.

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	L. Tan and Jean Jiang , Digital Signal Processing Fundamentals and Applications, Third Edition, Academic Press, 2013				
2.	J. G. Proakis & D. G. Manolakis, Digital Signal Processing, Principles, Algorithms and Applications, Fourth edition, PHI, 2007.				
3.	S. K. Mitra, Digital Signal Processing: A Computer Based Approach, Fourth Edition, McGraw Hill, 2013.				
4.	L. R. Rabiner, B. Gold, Theory and application of digital signal processing, Third Edition, PHI, 2012				
5.	A. Antoniou, Digital Signal Processing: Signals, Systems, and Filters, TMH, 2006				

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code		15B17EC473	Semester EvenSemester IVMonth from Ja		Session 2022 -2023 Jan – Jun		
Course Na	ame	Digital Signal Pro	cessing (DSP)	Laborato	ry		
Credits		1		Contact I	Hours		0-0-2
Faculty (N	ames)	Coordinator(s)	Dr. Madhu Jai	n, Dr. Kapi	l Dev Tya	gi	
		Teacher(s) (Alphabetically)	Dr. Vineet Khandelwal, Dr. Vijay Khare				
COURSE	COURSE OUTCOMES COGNITIVE LEVELS				COGNITIVE LEVELS		
C277.1	Recall and interpret discrete time signals and systems in time domain and in frequency domain			Understanding [Level 2]			
C277.2	Develo operati	Iop and demonstrate coding skills from basic mathematical ations to complex operations like DFT and FFT.Applying [Level 3]					Applying [Level 3]
C277.3	Identif	ify and examine different digital filter structures. Analyzing [Level 4]					
C277.4	Determine and observe magnitude and phase characteristics (Frequency response Characteristics) of digital IIR-Butterworth, Chebyshev filters and digital FIR filters using window techniques for various applications of DSP.Evaluating [Level 5]						
L	1						1

Module No.	Title of the Module	List of Experiments	
1.	Introduction to MATLAB	Introduction to the MATLAB and its features.	C277.1
2.	Introduction to applications of MATLAB	Introduction to the different applications of MATLAB.	C277.1
3.	Discrete-Time Signals	Generation of discrete time signals with different operation on independent and dependent variable.	C277.1
4.	LTI Systems	Write your own MATLAB function to implement linear convolution as an operation to analyze discrete time LTI system.	C277.1
5.	Z-transform	Compute z- transform and inverse z-transform of a discrete time signals and systems. Plot pole-zero map of the same using symbolic tool box.	C277.1
6.	Discrete Fourier Transform (DFT)	Write your own MATLAB function to compute DFT (Discrete Fourier Transform) and IDFT (Inverse Discrete Fourier Transform) for the spectral analysis of signals.	C277.2
7.	Spectral Analysis	To determine magnitude and power spectrum of given signal.	C277.2
8.	Circular Convolution	Write your own MATLAB function 'mycirconv' to compute circular convolution of two sequences.	C277.2
9.	FFT	Develop radix-2 butterfly FFT (Decimation in Time) algorithm for the computation of N-point dft.	C277.2

10	FIR Filter	Write MATLAB program to design digital FIR filter employing	C277.4
10.		windowing technique.	
11.	IIR Filter	Write MATLAB program to design IIR digital filter for a given	C277.4
		specification using bilinear transformation and impulse invariant	
		method.	
12.	IIR Structures	Write MATLAB program for realization of digital IIR filter using	C277.3
		direct form-I & II, cascade and parallel method.	
13.	DFT Properties	Virtual Lab: Study of Transform domain properties and its use.	C277.2
14.	FIR Filter Study	Virtual Lab: Study of FIR filter design using window method.	C277.4
15	IIR Filter Study	Virtual Lab: Study of Infinite Impulse Response (IIR) filter.	
101			
Evaluation	Criteria		
Component	S	Maximum Marks	
V1		20	
V2		20	
AC and Virt	ual Lab Exp	30	
Attendance	-	15	
Report		15	
Total		100	
Project ha	sed learning. St	udents will design Digital filters (FIR and IIR) for the given	design

Project based learning: Students will design Digital filters (FIR and IIR) for the given design specifications using MATLAB programming as well Filter Design Analysis tool. Additionally, students in group sizes of two-three will realize various applications of DSP employing digital filters.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Sanjit K. Mitra, Digital Signal Processing: With DSP Laboratory Using MATLAB: A Computer-Based Approach, 4th Edition, TMH, 2013.

2. Vinay K. Ingle, John G. Proakis, Digital Signal Processing Using MATLAB, 3rd Edition, Cengage Learning, 2012.

Detailed Syllabii Lecture-wise Breakup

Subject Co	de	18B11EC212		Semester EVEN	sterSemester 4thSession 2022-23NMonth fromJanIoJune		
Subject Na	me	ANALOG AND D	NGITAL	. COMMUNICATI	ON		
Credits		4		Contact Hours	3-1-0		
Faculty		Coordinator(s)	Dr Ash	uish Goel, Dr Megł	na Agarwal		
(Names)		Teacher(s) (Alphabetically)	Vishal	saxena,			
COURSE	OUT	COMES				COGNITI	VE LEVELS
C211.1	Und amp gen	Understand need of modulation and differentiate among various amplitude modulation schemes and design simple systems for generating and demodulating amplitude modulated signals. ApplyingLevel (C1)				ingLevel (C1)	
C211.2	Ana syst	Analyze the generation and detection of FM signal and design basic systems for the indirect and direct generation of FM signals. Analyzing Level (C4)			ing Level (C4)		
C211.3	Understand the concepts of transmitters and receivers for analog modulations, Sampling process, time division multiplexing and GSOP.				ding Level (C2)		
C211.4	Understand the concepts of waveform coding techniques, Line Analyzing Level (C4) coding schemes and analysis of ISI Mitigation Techniques			ing Level (C4)			
C211.5	Understand the concepts of digital modulation techniques and Evaluating Level (C5) evaluate their probability of error and bandwidth efficiency.			ing Level (C5)			
Modulo No	Madula Na Cubitila of the Madula Tanica N			No. of Loctures			
Module No	Module No. Subtitle of the Module Topics			No. of Lectures			
1.		Introduction		Elements of system;Ana bandlimitec bandwidth	Elements of a communication2system;Analog and digital signals, bandlimited signals and systems,2		2

1.	Introduction	Elements of a communication system;Analog and digital signals, bandlimited signals and systems, bandwidth	2
2.	Amplitude modulation	Introduction to modulation; AMSC,DSB, SSB, VSB Communication. Detection of AM signals: Coherent detection, Envelope detection,Costas receiver.	7
3.	Angle modulation	Concepts of FM and PM,Narrowband and wideband FM, Direct and indirect methods of FM generation, Detection of FM signals	6
4.	Transmitters , Receivers and Multiplexing Techniques	AMandFMTransmitters,Superheterodyne AM and FM Receivers.FDM,TDM,Interchannelcrosstalkandbandwidtheffects	3
5.	Sampling and Quantization techniques	Time and frequency domain sampling with aperture effects, Reconstruction of signals, Ouantization process and mean	5

		square quantization error, GSOP.	
6.	Speech Coding ,Line Coding and Baseband Digital Transmission	Pulse Code modulation,Line Codes: Unipolar-NRZ, polar-NRZ, Unipolar-RZ, Bipolar-RZ, Manchester Code, DPCM, DM, Bit rate and bandwidth of digital signals, ISI Mitigation Techniques	11
7.	Digital Modulation Techniques	ASK, FSK ,PSK, QPSK Modulation, 16- QAM, Demodulation, Constellation diagrams, BER and their BW calculation,	9
		Total number of Lectures	43
Evaluation Cri	teria		
Components	Maximum Ma	arks	
T1	20		
T2	20		
End Semester E	xamination 35		
ТА	25		
	Total	100	

Project based learning: Here, students will learn the process of analog and digital modulation schemes as it is of the utmost importance to understand the process of communication system and to design the same. Student will be able to design the communicationsystem as per requirements and some simulation on Matlab can also be performed to analyze the same . Understating of these techniques will further help to work in any communication based industry.

Recommended Reading (Books/Journals/Reports/Websites etc.: Author(s), Title, Edition, Publisher, Year of Publication etc. in IEEE format)					
1.	LathiB.P, Modern Digital and Analog CommunicationSystems, 5th /ed ,Oxford University Press,2018				
2.	H. Taub, D. L. Schilling and GautamSaha, Principles of Communication Systems, 4th/ed, TMH, 2017				
3.	S.Haykin, Digital Communication Systems, John Wiley & Sons, 2013				

Detailed Syllabus Lab-wise Breakup

Course Code	18B15EC212	Semester Even		Semeste Month fr	r IV Session 2022-2023 rom Jan to June
Course Name	Analog and Digita	tal Communication Lab			
Credits	1	Contact Hours2 Hrs. per week		2 Hrs. per week	
Faculty (Names)	Coordinator(s)	Reema Budhiraja, Raghvendra Kumar Singh			

•		
	Teacher(s)	Ashish Goel, Neetu Joshi ,Rahul Kaushik, Ritesh Kumar Sharma
	(Alphabetically)	

COURSE	OUTCOMES	COGNITIVE LEVELS
C272.1	Design of circuits for analogue modulation/demodulation techniques.	Analyzing (C4)
C272.2	Understand the concepts of sampling process, and time division multiplexing.	Understanding (C2)
C272.3	Design and implement digital modulation techniques.	Analyzing (C4)
C272.4	Implementation of modulation techniques using MATLAB.	Applying (C3)

Module No.	Title of the Module	List of Experiments	CO
1.	Analogue modulation/demodulation	Implement amplitude modulation and DSB- SC modulation circuit using IC AD633 & calculate modulationindex for various modulating signals and study the over, exact and under modulation.	CO1
2.	Analogue modulation/demodulation	Demodulate amplitude modulated signal using Envelope detector.	CO1
3.	Analogue modulation/demodulation	Design a Frequency modulation (FM) circuit using IC XR 2206 and determine the frequency deviation and modulation index.	CO1
4.	Frequency mixer	Design a Frequency mixer circuit using ICAD633	CO1
5.	Sampling	Design a circuit to sample a given signal using IC LF398 and reconstruct the signal from sampled waveform	CO2
6.	Multiplexing	Study of TDM with different receiver synchronization techniques	CO2

Digital modulation/demodulation techniques Implement and Test Amplitude Shift Keying Circuit using IC LF 398 CO3 8. Digital modulation/demodulation techniques Implement and Test Frequency Shift Keying Circuit using IC LF 398 CO3 9. Digital modulation/demodulation techniques Implement and Test Phase Shift KeyingCircuit using IC LF 398. CO3 10. Digital modulation/demodulation techniques Study of Pulse Code Modulator (PCM) and Demodulator. CO3 11. Digital modulation/demodulation techniques Study of Delta Modulation and Demodulation techniques CO3 12. Digital modulation/demodulation techniques Generation & detection of ASK, FSK & PSK using trainer kit CO3 13. Software implementation of digital modulation/demodulation techniques Implement amplitude modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Assessment Components (ACS) AC1. Identification of components to be used & correct Implementation of circuit on bread board/KIT AC2. Reading and trace work AC3. Understanding of the experiment AC4. Lab Record Assessment AC4. Lab Record Assessment								
modulation/demodulation techniquesCircuit using IC LF 3988.Digital modulation/demodulation techniquesImplement and Test Frequency Shift Keying Circuit using IC LF 398CO39.Digital modulation/demodulation techniquesInplement and Test Phase Shift KeyingCircuit using IC LF 398.CO310.Digital modulation/demodulation techniquesStudy of Pulse Code Modulator (PCM) and Demodulator.CO311.Digital modulation/demodulation techniquesStudy of Delta Modulation and Demodulation Co3CO311.Digital modulation/demodulation techniquesStudy of Delta Modulation and Demodulation Using trainer kitCO313.Software implementation of digital modulation/demodulation techniquesImplement amplitude modulationCO414.Software implementation of digital modulation/demodulation techniquesImplement ASK and PSK modulation using MATLAB simulationCO414.Software implementation of digital modulation/demodulation techniquesAssessment Components (ACs)AC1. Identification of components to be used & correct Implementation of circuit on bread board/KIT AC2. Reading and trace workAC3. Understanding of the experiment AC4. Lab Record AssessmentAC4. Lab Record AssessmentTotal100Total100Protect Based Learning: This corres provides practical exposure to communication existen building blocks	7.	Digital		Implement and Test Amplitude Shift Keying	CO3			
techniques Implement and Test Frequency Shift Keying Circuit using IC LF 398 CO3 9. Digital modulation/demodulation techniques mplement and Test Phase Shift Keying Circuit using IC LF 398 CO3 10. Digital modulation/demodulation techniques Study of Pulse Code Modulator (PCM) and Demodulator. CO3 11. Digital modulation/demodulation techniques Study of Delta Modulation and Demodulation techniques CO3 12. Digital modulation/demodulation techniques Generation & detection of ASK, FSK & PSK using trainer kit CO3 13. Software implementation of digital modulation/demodulation techniques Implement amplitude modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Assessment Components (ACs) AC1. Identification of components to be used & correct Implementation of circuit on bread board/KIT AC2. Reading and trace work AC2. Understanding of the experiment AC4. Lab Record Assessment AC4. Lab Record Assessment AC4. Lab Record Assessment		modulation/demodu	ilation	Circuit using IC LF 398				
8. Digital modulation/demodulation techniques Implement and Test Frequency Shift Keying Circuit using IC LF 398 CO3 9. Digital modulation/demodulation techniques hplement and Test Phase Shift KeyingCircuit using IC LF 398. CO3 10. Digital modulation/demodulation techniques Study of Pulse Code Modulator (PCM) and Demodulator. CO3 11. Digital modulation/demodulation techniques Study of Delta Modulation and Demodulation techniques CO3 12. Digital modulation/demodulation techniques Generation & detection of ASK, FSK & PSK using trainer kit CO3 13. Software implementation of digital modulation/demodulation techniques Implement amplitude MATLAB simulation modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 Viva 1(Mid Sem Viva) 20 Assessment Components (ACs) AC1. Identification of circuit on bread board/KIT AC2. Reading and trace work AC3. Understanding of the experiment AC4. Lab Record Assessment AC4. Lab Record Assessment AC4. Lab Record Assessment AC4. Lab Record Assessment		techniques						
modulation/demodulation techniquesCircuit using IC LF 3989.Digital modulation/demodulation techniquesmplement and Test Phase Shift KeyingCircuit using IC LF 398.CO310.Digital modulation/demodulation techniquesStudy of Pulse Code Modulator (PCM) and Demodulator.CO311.Digital modulation/demodulation techniquesStudy of Pulse Code Modulator (PCM) and Demodulator.CO311.Digital modulation/demodulation techniquesStudy of Delta Modulation and Demodulation CO3CO312.Digital modulation/demodulation techniquesGeneration & detection of ASK, FSK & PSK using trainer kitCO313.Software implementation of digital modulation/demodulation techniquesImplement amplitude modulation using MATLAB simulationCO414.Software implementation of digital modulation/demodulation techniquesImplement ASK and PSK modulation using MATLAB simulationCO414.Software implementation of digital modulation/demodulation techniquesAssessment Components (ACS)CO4Viva 1(Mid Sem Viva)20 Viva 2(End Sem Viva)20 Viva 20 Assessment ComponentsAC3. Understanding of the experiment AC4. Lab Record AssessmentAc4. Lab Record AssessmentTotal100100100100	8.	Digital		Implement and Test Frequency Shift Keying	CO3			
techniques nplement and Test Phase Shift KeyingCircuit using IC LF 398. CO3 10. Digital modulation/demodulation techniques Study of Pulse Code Modulator (PCM) and Demodulator. CO3 11. Digital modulation/demodulation techniques Study of Delta Modulation and Demodulation CO3 12. Digital modulation/demodulation techniques Generation & detection of ASK, FSK & PSK using trainer kit CO3 13. Software implementation of digital modulation/demodulation techniques Implement amplitude modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 Viva 1(Mid Sem Viva) 20 Viva 2(End Sem Viva) 20 ASsessment Components Assessment Components AC1. Identification of circuit on bread board/KIT AC2. Reading and trace work AC3. Understanding of the experiment AC4. Lab Record Assessment AC4. Lab Record Assessment Viva 2(End Sem Viva) 20 Attendance 15 Implementation of the experiment AC4. Lab Record Assessment AC4. Lab Record Assessment		modulation/demodu	ilation	Circuit using IC LF 398				
9. Digital modulation/demodulation techniques Implement and Test Phase Shift KeyingCircuit using IC LF 398. CO3 10. Digital modulation/demodulation techniques Study of Pulse Code Modulator (PCM) and Demodulator. CO3 11. Digital modulation/demodulation techniques Study of Delta Modulation and Demodulation techniques CO3 12. Digital modulation/demodulation techniques Generation & detection of ASK, FSK & PSK using trainer kit CO3 13. Software implementation of digital modulation/demodulation techniques Implement amplitude modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 Viva 1(Mid Sem Viva) 20 Assessment Components (ACs) AC1. Identification of circuit on bread board/KIT AC2. Reading and trace work AC3. Understanding of the experiment Assessment Components 30 AC4. Lab Record Assessment AC4. Lab Record Assessment AC4. Lab Record Assessment Total 100 Total Total Total Total Total		techniques						
modulation/demodulation techniques using IC LF 398. 10. Digital modulation/demodulation techniques Study of Pulse Code Modulator (PCM) and Demodulator. CO3 11. Digital modulation/demodulation techniques Study of Delta Modulation and Demodulation CO3 12. Digital modulation/demodulation techniques Generation & detection of ASK, FSK & PSK using trainer kit CO3 13. Software implementation of digital modulation/demodulation techniques Implement amplitude modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 Evaluation Criteria Components Maximum Marks 20 Assessment Components (ACs) AC1. Identification of circuit on bread board/KIT AC2. Reading and trace work AC3. Understanding of the experiment AC4. Lab Record Assessment AC4. Lab Record Assessment AC4. Lab Record Assessment to communication system building blocks	9.	Digital		Implement and Test Phase Shift KeyingCircuit	CO3			
techniques study of Pulse Code Modulator (PCM) and Demodulator. CO3 10. Digital modulation/demodulation techniques Study of Pulse Code Modulator (PCM) and Demodulator. CO3 11. Digital modulation/demodulation techniques Study of Delta Modulation and Demodulation CO3 12. Digital modulation/demodulation techniques Generation & detection of ASK, FSK & PSK using trainer kit CO3 13. Software implementation of digital modulation/demodulation techniques Implement amplitude modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 Evaluation Criteria Maximum Marks Assessment Components (ACs) AC1. Identification of components to be used & correct Implementation of circuit on bread board/KIT AC2. Reading and trace work AC3. Understanding of the experiment AC4. Lab Record Assessment AC4. Lab Record Assessment Viva 2 (End Sem Viva) 20 Attendance IS AC4. Lab Record Assessment AC4. Lab Record Assessment Total 100 100 100 Implement Assessment Implement Assessment		modulation/demodu	ilation	using IC LF 398.				
10. Digital modulation/demodulation techniques Study of Pulse Code Modulator (PCM) and Demodulator. CO3 11. Digital modulation/demodulation techniques Study of Delta Modulation and Demodulation and Demodulation CO3 12. Digital modulation/demodulation techniques Generation & detection of ASK, FSK & PSK using trainer kit CO3 13. Software implementation of digital modulation/demodulation techniques Implement amplitude modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques MATLAB simulation CO4 Viva 2(Ind Sem Viva) 20 Viva 2(End Sem Viva) 20 Viva 2(End Sem Viva) 20 Assessment Components (ACS) AC1. Identification of components to be used & correct Implementation of circuit on bread board/KIT AC2. Reading and trace work AC3. Understanding of the experiment AC4. Lab Record Assessment Components AS AC4. Lab Record Assessment AC4. Lab Record Assessment AS AC4. Lab Record Assessment building blocks Attendance 15 Implement Assessment AS AC4. Lab Record Assessment building blocks Attendance 15 100 AC4. Lab Record Assessment AS AC4. Lab Record Assessment AS		techniques						
modulation/demodulation techniques Demodulator. 11. Digital modulation/demodulation techniques Study of Delta Modulation and Demodulation of CO3 CO3 12. Digital modulation/demodulation techniques Generation & detection of ASK, FSK & PSK using trainer kit CO3 13. Software implementation of digital modulation/demodulation techniques Implement amplitude modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 Viva 1(Mid Sem Viva) 20 Assessment Components (ACs) AC1. Identification of components to be used & correct Implementation of circuit on bread board/KIT AC2. Reading and trace work AC3. Understanding of the experiment AC3. Understanding of the experiment AC4. Lab Record Assessment AC4. Lab Record Assessment Viva 2(End Sem Viva) 20 AC4. Lab Record Assessment AC4. Lab Record Assessment Viva 2(End Sem Viva) 100 Total Total Total	10.	Digital		Study of Pulse Code Modulator (PCM) and	CO3			
techniques Image: constraint of techniques Study of Delta Modulation and Demodulation and Demodulation CO3 11. Digital modulation/demodulation techniques Generation & detection of ASK, FSK & PSK using trainer kit CO3 12. Digital modulation/demodulation techniques Generation & detection of ASK, FSK & PSK using trainer kit CO3 13. Software implementation of digital modulation/demodulation techniques Implement amplitude modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 Evaluation Criteria Components (ACs) Acsessment Components (ACs) Niva 2(End Sem Viva) 20 AC1. Identification of components to be used & correct Implementation of circuit on bread board/KIT AC2. Reading and trace work Viva 2(End Sem Viva) 20 AC2. Reading and trace work AC3. Understanding of the experiment Attendance 15 15 Total Total Total		modulation/demodul	lation	Demodulator.				
Digital modulation/demodulation techniques Study of Delta Modulation and Demodulation CO3 12. Digital modulation/demodulation techniques Generation & detection of ASK, FSK & PSK using trainer kit CO3 13. Software implementation of digital modulation/demodulation techniques Implement amplitude modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Assessment Components (ACs) CO4 Viva 1(Mid Sem Viva) 20 Ac1. Identification of components to be used & correct Implementation of circuit on bread board/KIT AC2. Reading and trace work AC3. Understanding of the experiment Viva 2(End Sem Viva) 20 AC4. Lab Record Assessment AC4. Lab Record Assessment AC4. Lab Record Assessment Viva 2(End Sem Viva) 100 100 100 100 100		techniques						
modulation/demodulation techniques Generation & detection of ASK, FSK & PSK using trainer kit CO3 12. Digital modulation/demodulation techniques Generation & detection of ASK, FSK & PSK using trainer kit CO4 13. Software implementation of digital modulation/demodulation techniques Implement amplitude MATLAB simulation modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 Evaluation Criteria Components Assessment Components (ACs) CO4 Viva 1(Mid Sem Viva) 20 AC1. Identification of circuit on bread board/KIT AC2. Reading and trace work Viva 2(End Sem Viva) 20 AC3. Understanding of the experiment AC4. Lab Record Assessment Attendance 15 15 Total 100	11.	Digital		Study of Delta Modulation and Demodulation	CO3			
techniques Generation & detection of ASK, FSK & PSK CO3 12. Digital modulation/demodulation techniques Generation & detection of ASK, FSK & PSK CO3 13. Software implementation of digital modulation/demodulation techniques Implement amplitude modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 Viva 1(Mid Sem Viva) 20 AC1. Identification of components to be used & correct Implementation of circuit on bread board/KIT AC2. Reading and trace work AC3. Understanding of the experiment AC4. Lab Record Assessment Attendance 15 Implement atom of the experiment AC4. Lab Record Assessment AC4. Lab Record Assessment Total 100 100 100 100 100 100		modulation/demodul	ation					
12. Digital modulation/demodulation techniques Generation & detection of ASK, FSK & PSK using trainer kit CO3 13. Software implementation of digital modulation/demodulation techniques Implement amplitude modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 Viva 1(Mid Sem Viva) 20 Assessment Components to be used & correct Implementation of circuit on bread board/KIT AC2. Reading and trace work AC3. Understanding of the experiment AC4. Lab Record Assessment AC4. Lab Record Assessment Viva 2(End Sem Viva) 15 Implement Assessment AC4. Lab Record Assessment AC4. Lab Record Assessment Attendance 15 100 100 100 100 100		techniques			~~~			
modulation/demodulation techniques using trainer kit 13. Software implementation of digital modulation/demodulation techniques Implement amplitude MATLAB simulation modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 Evaluation Criteria Components Assessment Components (ACs) CO4 Niva 1(Mid Sem Viva) 20 AC1. Identification of components to be used & correct Implementation of circuit on bread board/KIT AC2. Reading and trace work Viva 1(Mid Sem Viva) 20 AC3. Understanding of the experiment AC4. Lab Record Assessment Astendance 15 15 15 15 Lab Record 15 1000 15 1000	12.	Digital		Generation & detection of ASK, FSK & PSK	CO3			
techniques13.Software implementation of digital modulation/demodulation techniquesImplement amplitude modulationmodulation usingCO414.Software implementation of digital modulation/demodulation techniquesImplement ASK and PSK modulation using MATLAB simulationCO414.Software implementation of digital modulation/demodulation techniquesImplement ASK and PSK modulation using MATLAB simulationCO415.MATLAB simulationMATLAB simulationMATLAB simulationCO414.Software implementation of componentsMATLAB simulationCO415.Acsessment Components (ACs)AC1. Identification of components to be used & correct Implementation of circuit on bread board/KITAC2. Reading and trace workViva 1(Mid Sem Viva)20AC3. Understanding of the experiment AC4. Lab Record AssessmentAC4. Lab Record AssessmentAttendance15100Implementation system building blocksProject Based Learning: This course provides practical exposure to communication system building blocks		modulation/demodul	lation	using trainer kit				
13. Software implementation of digital modulation/demodulation techniques Implement amplitude modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 Evaluation Criteria MATLAB simulation MATLAB simulation CO4 Viva 1(Mid Sem Viva) 20 AC1. Identification of circuit on bread board/KIT AC2. Reading and trace work Viva 2(End Sem Viva) 20 AC3. Understanding of the experiment AC4. Lab Record Assessment Assessment Components 30 AC4. Lab Record Assessment AC4. Lab Record Assessment Total 100 Implement approximation system building blocks		techniques			004			
digital modulation/demodulation techniques MATLAB simulation 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 Evaluation Criteria Assessment Components (ACs) Acti. Identification of components to be used & correct Implementation of circuit on bread board/KIT Act2. Reading and trace work Viva 1(Mid Sem Viva) 20 Act3. Understanding of the experiment Act3. Understanding of the experiment Assessment Components 30 Act4. Lab Record Assessment Act4. Lab Record Assessment Lear Record Assessment Total 100 100 Project Based Learning: This course provides practical exposure to communication system building blocks	13.	Software implementation	tion of	Implement amplitude modulation using	CO4			
Inodulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 14. Software implementation of digital modulation/demodulation techniques Implement ASK and PSK modulation using MATLAB simulation CO4 Evaluation Criteria Components Assessment Components (ACs) Ac1. Identification of components to be used & correct Implementation of circuit on bread board/KIT AC2. Reading and trace work Viva 1(Mid Sem Viva) 20 AC2. Reading and trace work AC3. Understanding of the experiment Assessment Components 30 AC4. Lab Record Assessment Ac4. Lab Record Assessment Attendance 15 100 Dot Dot		digital	a 4 •a•a	MATLAB simulation				
Iterinques14.Software implementation of digital modulation/demodulation techniquesImplement ASK and PSK modulation using MATLAB simulationCO414.Software implementation of digital modulation/demodulation techniquesImplement ASK and PSK modulation using MATLAB simulationCO414.Modulation/demodulation techniquesMATLAB simulationCO414.Modulation/demodulation techniquesMATLAB simulationCO414.Modulation/demodulation techniquesMATLAB simulationCO414.Modulation/demodulation techniquesMATLAB simulationCO414.Modulation/demodulation techniquesMATLAB simulationCO415.Maximum MarksAc1. Identification of components to be used & correct Implementation of circuit on bread board/KIT AC2. Reading and trace workAc2. Reading and trace workViva 2(End Sem Viva)20 Ac3AC3. Understanding of the experiment AC4. Lab Record AssessmentAC4. Lab Record AssessmentAttendance15 ImplementationImplementation system building blocksProject Based Learning: This course provides practical exposure to communication system building blocks		modulation/demodul	ation					
I4. Software implementation of digital modulation/demodulation techniques Implement ASK and TSK modulation using COV Evaluation Criteria MATLAB simulation MATLAB simulation Components Assessment Components (ACs) Ac1. Identification of components to be used & correct Implementation of circuit on bread board/KIT Viva 1(Mid Sem Viva) 20 Ac2. Reading and trace work Viva 2(End Sem Viva) 20 AC3. Understanding of the experiment Assessment Components 30 AC4. Lab Record Assessment Attendance 15 15 Lab Record 15 100 Project Based Learning: This course provides practical exposure to communication system building blocks		Software implementation	tion of	Implement ASK and PSK modulation using	CO4			
Image: Instant modulation demodulation techniquesImage: Instant of techniquesEvaluation CriteriaAssessment Components (ACs)ComponentsAC1. Identification of components to be used & correct Implementation of circuit on bread board/KITViva 1(Mid Sem Viva)20Viva 2(End Sem Viva)20Acc2. Reading and trace workViva 2(End Sem Viva)20Acc3. Understanding of the experimentAssessment Components30Attendance15Lab Record15Total100	14.	digital		MATLAP simulation	004			
Inordination/demodulationtechniquesAssessment Components (ACs)Evaluation CriteriaAssessment Components (ACs)ComponentsAC1. Identification of components to be used & correct Implementation of circuit on bread board/KITMaximum MarksAC2. Reading and trace workViva 1(Mid Sem Viva)20Viva 2(End Sem Viva)20Acc3. Understanding of the experimentAssessment Components30Attendance15Lab Record15Total100		modulation/demodul	ation	MATLAD SIIIulauoli				
Evaluation CriteriaAssessment Components (ACs)ComponentsAC1. Identification of components to be used & correct Implementation of circuit on bread board/KITViva 1(Mid Sem Viva)20Viva 2(End Sem Viva)20Ac2. Reading and trace workViva 2(End Sem Viva)20Assessment Components30Attendance15Lab Record15Total100		techniques	ation					
ComponentsAC1. Identification of components to be used & correct Implementation of circuit on bread board/KITViva 1(Mid Sem Viva)20Viva 2(End Sem Viva)20Assessment Components30Attendance15Lab Record15Total100	Evolution	Critorio		Assessment Components (ACs)				
ComponentsAC1. Identification of components to be used & correct Implementation of circuit on bread board/KITViva 1(Mid Sem Viva)20AC2. Reading and trace workViva 2(End Sem Viva)20AC3. Understanding of the experimentAssessment Components30AC4. Lab Record AssessmentAttendance15AC4. Lab Record AssessmentLab Record15AC4. Lab Record AssessmentTotal100AC4. Lab Record Assessment								
Maximum MarksImplementation of circuit on bread board/KITViva 1(Mid Sem Viva)20Viva 2(End Sem Viva)20Assessment Components30Attendance15Lab Record15Total100	Components Movimum Morka			AC1. Identification of components to be used & correct				
Viva 1(Mid Sell Viva) 20 AC2. Reading and trace work Viva 2(End Sem Viva) 20 AC3. Understanding of the experiment Assessment Components 30 AC4. Lab Record Assessment Attendance 15 AC4. Lab Record Assessment Lab Record 15 AC4. Lab Record Assessment Total 100 Project Based Learning: This course provides practical exposure to communication system building blocks	Vive 1(Mid Sem Vive) 20		20	Implementation of circuit on bread board/KIT				
Assessment Components 30 AC4. Lab Record Assessment Attendance 15 Lab Record 15 Total 100	Viva 2(End Sem Viva) 20		20	AC2. Keading and trace work				
Attendance 15 Lab Record 15 Total 100	Assessment Components 20		30	AC4 Lab Record Assessment				
Lab Record 15 Total 100 Project Based Learning: This course provides practical exposure to communication system building blocks	Attendance 15		15					
Total 100 Project Based Learning: This course provides practical exposure to communication system building blocks	Lab Record 15		15					
Project Based Learning: This course provides practical exposure to communication system building blocks	Total 100		100					
	Project Rase	d Learning: This course n	rovides r	ractical exposure to communication system building b	locks			

such as filters, mixers etc. The students are trained for constructing the circuits for analog and digital communication. Students get hands on experience while working on bread board and design Modulation/Demodulation circuits using discrete components.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	Lathi B.P, Modern Digital and Analog Communication Systems, 5th /ed ,Oxford University Press, 2018				
2.	S.Haykin, Digital Communication Systems ,John Wiley & Sons, 2013				
3.	Lab Manuals				

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code		15B1NHS433		Semester EVEN		Semester IV Session 20			2022 -2023
			(specify Odd/Even)						
Course Name INTRODUC		INTRODUCI	TION TO) SOCIOLOGY	ii		1		
Credits			3(2-1-0)		Contact Hours 3		3		
Faculty (Names)		Coordinato	r(s) Prof Alka Sharma						
		Teacher(s) (Alphabetica	ally)	ly) Ms.Shikha Kumari					
COURSE	OUTCO	OMES						COGNIT	IVE LEVELS
C206-7.1	Demon	strate an underst	tanding of sociological perspectives and concepts.				Remembering (C1)		
C206-7.2	Explain caste ar	Explain the concept of social stratification and types of stratification as class, Understand caste and gender.						ling (C2)	
C206-7.3	Apply t	Apply the major sociological perspectives, social concepts and methods in the systematic study of society.						23)	
C206-7.4	06-7.4 Analyze the relevance of shapes and influences s			s social Institutior eractions.	ns in societies	s and how	it	Analyzing (C4)	
Module No.	Title o Modu	f the le	Topics	s in the Module					No. of Lectures for the module
1.	Introdu	ction	Introduction to sociology as a discipline of social science, difference between common sense and sociology, Major sociological perspective and methods, the sociological imagination5					5	
2.	Basic C Sociolo	Concepts of ogy	ofGroups, sub-groups, society, characteristics of society, culture, institutions, Institutionalization, Conformity, Social Change6				6		
3.	Social stratification Stratification-concept, theories and type. Basis of stratification caste, class gender and race, status and Roles				ratification	5			
4.	Sociolo Instituti	gy of ions	Kinship, Family ,Religion, Education &Economy in Society6				6		
5.	Process and Mo	s of Change bility	ge Process of Social Change in Indian Society: Sanskritization, Westernization, Modernization, Urbanization				4		
6.	Sociology of Collectivity Collective Action and Social Movements					2			
					Т	otal nun	nber of	Lectures	28
Evaluation Criteria									
Components		Maximum Marks							
T2			20						
End Semes	ter Exar	nination	35						
ТА		25 (Project basedpresentation, assignment and quiz)							
Total			100						

The students will find out which aspect of Organizational culture influences the employee' performance and formulate recommendations regarding organizational culture, which will help the organization to be more inclusive of different cultural practices of the employees (tackle issues such as gender equity, respect for other languages, reduce racial identity crisis, reduce class and caste discrimination, promote respect for all religions etc) to increase their belongingness towards the organization.

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1	Johnson, Harry M. Sociology: a systematic introduction. Routledge, 2013.					
2	Rawat, H. K. Sociology: basic concepts. Rawat Publications, 2007.					
3	Macionis, John J. Society: the basics. Pearson/Prentice Hall, 2009.					
4	C. Wright. And Mills, The Sociological Imagination, Oxford: Oxford University Press, 1959.					
5	Peter L Berger, <i>The Social Construction of Reality: a Treatise in the Sociology of Knowledge. Garden City</i> , New York: Anchor, 1966.					
6	Conley and Dalton, <i>You May Ask Yourself: An Introduction to Thinking Like a Sociologist</i> , 2nd Ed, W. W. Norton & Company New York, 2011. ISBN: 0393935175 or 978-0393935172					
7	Ballentine and Roberts, Our Social World: Introduction to Sociology, 4th Edition, Sage. 2013.					
8	Robert Parkinand Linda Stone, (ed.). <i>Kinship and Family: An Anthropological Reader</i> , U.S.A.: Blackwell, 2000, selected chapters					