<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	19M21PH217	Semester: Eve	n	Semester: IV Session: 2022-2023		
				Month from: January to June		
Course Name	Fiber Optics					
Credits	3		Contact Hours 3		3	
Faculty (Names)	Coordinator	Navneet Kum	ar Sharma			
	Teacher Navneet Kumar S		ar Sharma			

COURSE	OUTCOMES	COGNITIVE LEVELS
C230-6.1	Recall optical fiber types, design and basic characteristics; Electromagnetic (modal) analysis of step index multimode fibers	Remembering (C1)
C230-6.2	Explain splices, connectors and fiber cable; Loss mechanism in optical fiber; Pulse propagation, dispersion and chirping in single mode fibers	Understanding (C2)
C230-6.3	Apply concepts of stimulated Raman scattering, stimulated Brillouin Scattering; Self phase modulation and cross phase modulation	Applying (C3)
C230-6.4	Analyze optical fiber sensors	Analyzing (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module			
1.	Science of Fiber Optics	introduction and importance of fiber optics technology, wave propagation in Planer waveguide and cylindrical waveguides, Review of optical fiber types, design, numerical aperture and basic characteristics; Ray analysis of optical fiber, Electromagnetic (modal) analysis of step index multimode fibers, Hybrid and linearly polarized modes, Power confinement and mode cut off, Mode field diameter.				
2.	Experimental Techniques	Fiber fabrication and characterization, splices, connectors and fiber cable. Loss mechanism in optical fiber. Pulse propagation, Dispersion and chirping in single mode fibers, Dispersion- compensation mechanism, Dispersion-tailored and dispersion- compensating fibers, Fiber birefringence and polarization mode dispersion, Fiber bandwidth.	12			
3.	Nonlinear effects in optical fiber	Stimulated Raman scattering, stimulated Brillouin scattering, self phase modulation, cross phase modulation, optical solitons.	8			
4.	Fiber based devices	Optical fiber sensors: Intensity modulated sensors, Phase modulated sensors, Spectrally modulated sensors, Optical temperature Sensor, Mach-Zehnder interferometer. Photonic crystal fibers.	8			
		Total number of Lectures	40			
Evaluatio	n Criteria					
Compone T1 T2	nts	Maximum Marks 20 20				

End Semester Examination TA	 35 25 [Attendance (05 M), Class Test, Quizzes, etc (06 M), Assignments in PBL mode (10 M), and Internal assessment (04 M)]
Total	100

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)						
1.	Fundamentals of Photonics – B. E. A. Saleh and M. C. Teich, wiley, 2nd edition.						
2.	Principles of Optics - M. Born and E. Wolf, Cambridge university press, 7th edition.						
3.	Optical Electronics - A.Ghatak and K.Thyagarajan, Cambridge university press.						
4.	Optical Fiber Communications: principles and practice – John M.Senior, Pearson Education, 3rd edition.						
5.	Electronic Communications – D. Roddy and J. Coolen, Pearson Education, 4th edition.						

Project based learning: Each student will opt a topic and will do the theoretical study in detail. The students will submit their report. The students analyze the fiber fabrication and characterization, loss mechanisms in optical fiber, optical solitons, optical fiber sensors and photonic crystal fibers. This shall improve the skills and employability of the students in optical fiber industries.

Detailed Syllabus

Course C	ode	19M27PH211	Semester: E	VEN	Semester: 4 th Session: 2022-		
					Month	n to June	
Course N	ame	Dissertation			-		
Credits		10		Contact	ct Hours 20		
Faculty (Names)	ty Coordinator(s) Manoj Kumar						
		Teacher(s) (Alphabetically)	Anirban Pa Sandeep M	athak, Nav Iishra	neet Sha	arma, Papi	ia Chowdhury,
COURSE	C OUT	COMES					COGNITIVE LEVELS
C250.1	Review the contemporary scholarly literature, activities, and explore experimental and theoretical tools/ techniques/software/hardware for hands-on in the respective project area in various domain of theoretical and experimental condensed matter and applied optics.						
C250.2	various feasible methods/techniques of solving a problem to slot a appropriate solution methodology						
C250.3	Employ latest techniques and software tools to accomplish the proposed objectives. Evaluate/validate obtained results based on evidence and analysis.						
C250.4	Demo comn future	onstrate the technonication skills. e developments in t	chnical repo Illustrate the he selected fie	ort writ significa eld.	ing ar	nd oral possible	Create Level (C6)

S.N.	Topics in module
Madula 1	Identification of the dissertation problem and literature review in the related field
	and explore experimental and theoretical tools/ techniques/software/hardware.
N 11 2	Acquire knowledge and analyze various methods/techniques to be used in solving
Module 2	the defined problem and find a suitable methodology.

	Utilize latest techniques/software/hardware tools to achieve the proposed
Module 3	objectives and obtain results. Evaluation/analysis of the obtained results and their
	interpretation.
	Compilation of the results and report writing with ethics (plagiarism less than
Module 4	10%) and presentation of the dissertation work.

Evaluation Criteria	
Components	Maximum Marks
Day to Day Evaluation	40 (To be awarded by supervisor)
End Semester Evaluation	50 (To be awarded by a panel of 3 examiners)
Special Contribution	10 (To be awarded by a panel of 3 examiners)
Total	100

<u>CO-PO and CO-PSO Mapping:</u>

COs	PO1	PO2	PO3	PSO1
C250.1	1	3		3
C250.2	1	3		3
C250.3	1	3		3
C250.4			3	
C250	1	3	3	3

				cetare mise pre	P				
Course Co	de	20M22PH22	0	Semester: Eve	r: Even Semester: 4th Session 2022 Month from: Jan to June				2022-23
Course Na	me	Optical and Q	Quantum	Computing		<u>L</u>			
Credits			3 Contact Hours 3						5
Faculty (N	ames)	Coordinato	Dr. Sandeep M	lishra					
		Teacher		Dr. Sandeep M	lishra				
COURSE OUTCOMES								COGNIT	IVE LEVELS
CO1	Recall	basicphysics a	ind math	nematics behind	computation	n		Remembe	ring (C1)
CO2	Explai	n computation	as a phy	vsical process				Understan	ding (C2)
CO3	Apply perform	optical elemen n computation	ts and la tasks	aws of optics and	l quantum r	nechanics	to	Applying	(C3)
CO4	Analyz using o	ze complex pro optical and qua	x problems related to optical and quantum computing Analyzing d quantum resources						s (C4)
Module No.	Title o Modu	f the le	Topics in the Module						No. of Lectures for the module
1.	Introd compt	luction to ıting	History of computation, status and future prospects; Basic ideas of information theory and complexity classes; Shannon entropy;Information as a physical quantity and physical world from the perspective of information theory; bits and qubits; limitations of traditional semiconductor- based computers and different alternative strategies with specific attention to optical and quantum approaches to computation; Basic Operation of Optics for Computing and the possible architectures of optical computers						5
2.	Mathe prelim	ematical iinaries	Essential linear algebra; partial transpose; partial trace; Gram-Schmidt procedure, etc.; discrete Fourier transform; Fourier transform property of lens					5	
3.	Optica	al computing	Logical and arithmetic computation (including addition, subtraction, multiplication, averaging, vector-matrix multiplication, etc.) using photons; Digital optical computing: devices used and basic ideas and applications of polarization-encoded optical shadow-casting scheme; Optical storage and switches; SLM and its applications in optical computing						10
4.	Quant	um	Non-lo	ocality and	entangleme	ent: the	ir g	eneration,	15

Detailed Syllabus Lecture-wise Breakup

computation

and

characterization and measures; linear and nonlinearoptical

	quantum communication	components used in computing; quantum gates and circuits and how to implement a quantum/classical gate using linear and nonlinear optical devices; teleportation, superdense coding, quantum algorithms;quantum cryptography; quantum error correcting codes; practical quantum computers (including quantum computers in cloud)	
5.	Optical realizations and challenges	Optical realization of classical and quantum computing devices, KLM approach, present challenges and future opportunities	5
		Total number of Lectures	40
Evaluation	ı Criteria	Total number of Lectures	40

Project Based learning: The students will be given some minor projects to work in group of two students on different aspects of Optical and Quantum computing. The idea it to encourage the students to learn the techniques of quantum commutation for real life applications. IBM quantum experience have put some 5-qubit quantum computers on cloud and students can access them to run their quantum circuits. Such projects will help the students in development of their own circuits for practical applications. Students can also gain some experience of quantum cryptography by working on BB84 protocol set up located at quantum cryptography lab of the institute. Further, students will be encouraged to understand and develop techniques via which the current quantum technologies can be used for solving real life problems.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	X Li, Z Shao, M Zhu, and J Yang, Fundamentals of Optical Computing Technology, Springer, Singapore 2018ISBN 978-981-10-3847-1
2.	P Kok and B W Lovett, Optical Quantum Information Processing, Cambridge University Press, Cambridge, 2010 ISBN 978-0-521-51914-4
3.	M A Karim and Abdul A S Awwal, Optical Computing an Introduction, Wiley, Singapore, 2003
4.	A Pathak, Elements of Quantum Computation and Quantum Communication, Boca Raton, CRC Press, 2015
5.	M A Nielsen and I Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, 2010
6	R P Feynman, Feynman's Lectures on Computing, CRC Press, Boca Raton, 2018

CO-PO MAPPING:

COs	PO1	PO2	PO3	PSO1
CO1	2	2		1
CO2	3	3		3
CO3	2	3		3
CO4	2	3		3

1: Weakly related

Left Blank: Not related

Department of Physics and Materials Science and Engineering

AY: 2022-23 (Even Semester)

Course Opening Report

Programme Name: M.Sc. Physics Semester: 4th Course Name & Code: Optical and Quantum Computing (20M22PH220) NBA code: C231-6

<u>1. Course Outcomes:</u> At the completion of the course, students will be able to,

S.N.	DESCRIPTION	COGNITIVE LEVEL
CO1	Recall basic physics and mathematics behind computation	Remembering (C1)
CO2	Explain computation as a physical process	Understanding (C2)
CO3	Apply optical elements and laws of optics and quantum mechanics to perform computation tasks	Applying (C3)
CO4	Analyze complex problems related to optical and quantum computing using optical and quantum resources	Analyzing (C4)

2. CO-PO-PSO Mapping:

COs	PO1	PO2	PO3	PSO1
C231-6.1	2	2		1
C231-6.2	3	3		3
C231-6.3	2	3		3
C231-6.4	2	3		3

3. Identified gaps in Syllabus/ Course Description (If Any):

Topics to be introduced	Strengthens CO	Strengthens PO, PSO	Method of Identification
None			

4. Modifications in Syllabus/ Course Description (If Any):

Details of Modification (Addition/ Removal)	Justification	Strengthens POs/PSOs
None		

5. Actions for Improving CO Attainments: None

<u>6. Innovative Teaching and Learning Method to be used:</u> Assignments will be given on topic of advance development in the field of Quantum Computing and open discussion session will be held for further understanding of these topics. We will utilize Online education platform such as IBM Quantum research.

7. Strategies for

Strategies for

• Weak Learners:

SNo.	Strategy	Expected Outcomes	Documents to be produced
1	Extra study material and questions will be given for weak learners to practice.	Weak learners will be able to develop a better understanding and perform better.	Tutorials

• Bright Students:

SNo.	Strategy	Expected Outcomes	Documents to be
			produced

1.	Students will be given related research	Bright students will develop the presentation	Project/assignment report
	papers and will be asked to go through	skills about research articles and project	
	and present the important points of	development skills.	
	research articles.		

<u>8. Innovative Evaluation Strategy to be used:</u> Regular assessment of students throughout the semester in the form of quiz, tutorials, assignments and open discussion. We will also utilize Online evaluation plateform G-forms, Quizes.

Signature:

Module Coordinator:Dr Manoj Tripathi

Signature:

Course Coordinator: Dr. Sandeep Mishra