Course Code		15B1NEC	2731	Semester Even (specify Odd/Even)		Semester VII Session 2 Month from August to D		II Session 20 August to De	022-23 ecember
Course Name Soft		Soft Comput	mputing in Electronics						
Credits			3		Contact I	Hours		3	
Faculty (N	ames)	Coordinato	r(s)	Dr.Vijay khare	;				
		Teacher(s) (Alphabetica	ally)	ully) Dr. Vijay khare					
COURSE	OUTCO	OMES						COGNITIV	E LEVELS
CO1	Explai Artific	in soft compu	ting tec t systen	hniques and th	eir roles ir	ı building	5	Understand	ing Level (C2)
CO2	Apply proble	neural netwo ms	orks to p	battern classific	ation and	regressio	n	Applying	g Level (C3)
CO3	Apply fuzzy logic and genetic algorithms to handle uncertainty and optimization problems Applying Level (C3)					g Level (C3)			
CO4	Evaluate and compare solutions by various soft computing approaches for a real time problem use existing software tools.Evaluating Level (C					g Level (C5)			
Module No.	Module Title of the No. Module			Topics in the Module				No. of Lectures for the module	
1.	Introduction Introduction to Artificial Intelligent soft computing evolution of comp Soft Computing, hard computing a soft computing methods.				ligence, 1 computinging and s	Intro g, H oft	oduction of Principle of computing,	2	
2.	Introduction to Neural Network architecture Introduction Neural Network Neuron, Nerve structure, Synapse, Definition of neural network, Neuron models and n/w architecture Learning in Artificial Neural Networks, activation functions, Single Layer feed forward network, Multi layer feed forward network and recurrent network, Learning methods (Supervised, unsupervised and reinforced), Learning Rules (Hebbian, Gradient Descent, Competitive and Stochastic)					10			
3.	Feed to back Neura Percep	forward and Propagation l Network, ptron model	Percep Multi- propag Non li	btron neural network: Adaline and Madaline, layer feed forward neural network, back gation algorithms and radial basis neural network, inear activations operator, effect of learning rule			10		

and it applications coefficient. Application of neural network

4.	Associated Memory	Auto associative memory, Hetro associated memory bidirectional associated memory, Autocorrelators and Heterocorrelators, Applications	6					
5.	Fuzzy logic Introduction	Introduction, classical and Fuzzy sets & operations crisp relation and fuzzy relation, Fuzzy rules based system	6					
6	Fuzzy Logic Membership Functions	Membership Functions, Fuzzy if-else rules, Fuzzy algorithms, Fuzzyfications and defuzzifications, Fuzzy Controller Design and its industrial applications	6					
7	Genetic Algorithms	Introduction of Genetic Algorithms, working principle, Genetic Operators, Crossover and mutation properties, Generation cycle, Genetic Algorithms in Problem Solving	7					
		Total number of Lectures	47					
Eval	uation Criteria							
Com	ponents	Maximum Marks						
T2		20						
End	Semester Examination	35						
TA Tota	1	25 (Assignments, Attendance & Quiz) 100						
Proj diffe Fuzz featu emp	ect based learning: To mal event type data in the area of y logic based controller, are extraction, classification loyability and entreprene	the subject application based,. Each student in a group of 2- of electronics like Defense, Biomedical data, Images, Ro Students will understand different type of algorithm which on and optimization, It helps in developing skill developm eurship potential.	3 will analysis botics and are used for hent,					
Reco Refe	mmended Reading materi rence Books, Journals, Repo	al: Author(s), Title, Edition, Publisher, Year of Publication etc. rts, Websites etc. in the IEEE format)	(Text books,					
1.	Jacek M. Zurada, Introdu	uction to Artificial Neural Systems, Jaico Publishing Hous	e, 1994					
2.	2. Martin T. Hagan, Howard B. Demuth, Mark Beale, <i>Neural Network Design-Martin</i> <i>Hagan</i> ,2014							
3.	3. Simon Hykins, Neural Networks-A Comprehensive Foundation, Prentice Hall, 1999							
4. S. N. Sivanandam & S. N. Deepa, Principles of Soft Computing, Wiley - India, 2007								
5.	5. M. Mitchell, An Introduction to Genetic Algorithms, Prentice-Hall, 1998							
6.	Rajasekharan and Rai, N applications, PHI-2003	eural Networks, Fuzzy logic, Genetic algorithms: synthesi.	s and					
7.	S. Rajsekaran & G.A. Vi Synthesis and Application	jayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genons" Prentice Hall of India.	 S. Rajsekaran & G.A. Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications" Prentice Hall of India. 					

Course Code	15B1NEC733	Semester ODD		Semester VII Session 2022 -2023 Month from Aug to Dec		
Course Name	Fundamentals of Em	bedded Systems				
Credits	3		Contact Hours		3L	
Faculty (Names)	Coordinator(s) Dr Rachna Si		gh			
	Teacher(s) (Alphabetically)					

COURSE	OUTCOMES	COGNITIVE LEVELS
C431-4.1	Understanding of the fundamental concepts for embedded	Understanding (C2)
	systems design and complete architecture of the ATMEGA16/32	
	microcontroller.	
C431-4.2	Identify various on chip peripherals of the ATMEGA16/32	Applying (C3)
	microcontroller and make use of them for designing embedded	
	applications.	
C431-4.3	Experiment the basic concepts of embedded 'C' programming	
	and make use of them in designing embedded system	Analyzing (C4)
	applications around various sensors and actuators.	
C431-4.4	Understanding of the basic concept of RTOS, detailed study of	Understanding (C2)
	ARM7 architecture (32 bit) and study of wireless protocols.	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Fundamental for Embedded Developers.	Embedded System and its applications, Future Trends of Embedded System, Design Parameters of Embedded System and its significance, Microprocessor Versus Microcontrollers, Microcontrollers for Embedded Systems, Embedded Versus External Memory Devices, CISC Versus RISC Processors, and Harvard Versus Von-Neumann architecture.	4
2.	Detailed Study of AVR Microcontroller	ATmega16/32 Microcontroller (Basic architecture, Pin configuration, Memory organization (registers and i/o ports), Embedded C programming, Timers, on chip PWM, on chip ADC, Interrupts and Serial Communication.	10
3.	Concept of Embedded 'C' programming	Introduction to C, Difference between C and Embedded C, Data Types used in Embedded C, Arithmetic & Logical Operators, Control Flow, If & If – else, While & Do – while, For, Switch & Case, Continue & Break, Array & String, Functions and Header files, Pointers.	6
4.	Real World Interfacing with Microcontroller	Interfacing of single LED, Blinking of LED with timer and without timer, Interfacing of push-button and LED, Interfacing of 7-segment display, Interfacing of 8 push- buttons to control 7-segment display, Intelligent LCD Display, Interfacing of intelligent LCD display, Interfacing of Matrix Keyboard to control 7-segment display, ADC and	12

	DAC Modules, Interfacing of ADC0804, Interfacing with DAC0808, Different wave generation through DAC0808, Stepper Motor & DC Motor, Interfacing with stepper & DC motor, Different Sensor Interfacing, (IR Sensor, DTMF, Temperature Sensor)					
5.	Concept of RTOS and Advanced Microprocessor	Real Time Operating System (RTOS), Types of real time tasks, Task Periodicity, Process state diagram, Kernel and Scheduler, Scheduling algorithms, Shared data (Resource) and Mutual Exclusion, Semaphore, Introduction to ARM, Features, ARM Pipeline, Instruction Set Architecture (ISA), Thumb Instructions, Exceptions in ARM, Embedded Wireless Protocols (Infrared Data Association (IrDA), Bluetooth, IEEE 802.11).	10			
	Total number of Lectures					
Eval	uation Criteria					
Com T1 T2 End TA Tota	ComponentsMaximum MarksT120T220End Semester Examination35TA25 (Assignments & Quiz)Total100					
Project Based Learning: Students will learn about the Architecture of ATmega16/32 microcontroller, in addition they will also learn how to interface various peripherals with microcontroller. They will also learn about the basic concepts of embedded C programming. Students in group of 2 or 3 can implement these concepts in designing microcontroller based projects.						
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)						
1.	1. Muhammad Ali Mazidi, "The AVR microcontroller and Embedded Systems using Assembly and C", 2nd Edition, Pearson Education, 2008.					
2.	Frank Vahid / Tony Givarg	is, "Embedded System Design", Willey India, 2002.				
3.	Santanu Chattopadhyay, "I	Embedded System Design", 1 st Edition, PHI Learning, 2010.				

Detailed Syllabus Lab-wise Breakup

Course Code	16B1NEC832	Semester Odd (specify Odd/Even)	Semester VII Session 2022 -2023 Month from August - December
Course Name	MIMO-OFDM	APPLICATION TO WI	RELESS COMMUNICATION
Credits	3	Contact Hours	3

Faculty (Names)	Coordinator(s)	Dr Vivek Dwivedi
	Teacher(s) (Alphabetically)	Dr Vivek Dwivedi

COURSI At the co	E OUTCOMES: ompletion of the course, students will be able to:	COGNITIVE LEVELS
C310. 1	Understand concepts of MIMO diversity, OFDM and various generation wireless communication	Understanding Level (C2)
C310.2	Analyze effect of frequency offset, channels and its importance in real life communication systems.	Applying Level (C4)
C310.3	Identify theoretical and practical requirements for implementing MIMO OFDM	Applying Level (C4)
C310.4	Analyze the different Systems of future communication	Analyzing Level (C4)

Module	Subtitle of the	Topics in Module	No. of			
No.	Module		Lectures			
1.	Introduction	Introduction to wireless networks, basic principles of orthogonality, Single vs multi carrier systems, orthogonal frequency-division multiplexing (OFDM) block diagram, modulation, demodulation, synchronization, peak-to-average power ratio (PAPR) reduction.	8			
2.	ICI cancellation	Inter carrier interference (ICI) cancellation , ICI self cancellation, correlative coding based ICI cancellation, conjugate cancellation etc.	6			
3.	PAPR reduction	Various PAPR reduction techniques, clipping and filtering/Windowing, selective mapping (SLM), partial transmit sequence (PTS),tone reservation (TR), tone injection, peak insertion (PI) techniques etc	4			
4.	MIMO systems	MIMO channel model, antenna diversity, space-time coding, MIMO detection algorithms, channel capacity	4			
5	MIMO OFDM in 4G/LTE Networks	LTE, LTE advance, beam forming for LTEA,	10			
6	MIMO OFDM in 5G Networks	Introduction to 5G-NR, Massive MIMO, beam forming in 5G-NR	10			
		Total number of Lectures	42			
Evaluatio	Evaluation Criteria					
Components Maximum Marks						

T1	20
T2	20
End Semester	35
ТА	25
Total	100
1 otul	100

Project Based Learning: Student will be able to develop code for computing PAPR, MIMO detection Algorithm

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. MIMO-OFDM Wireless Communications with MATLAB, by Yong Soo Cho, Jaekwon Kim, Won Young Yang, Chung-Gu Kang, Wiley, 2018.

2. OFDM for Wireless Communication Systems, Ramjee Prasad, ARTECH house

Course Code	18B12EC413	Semester Odd		Semester VII Session 2022-2023		
				Month from Aug-Dec		
Course Name	Digital Control Syste	ms				
Credits	3		Contact Hours		3L	
Faculty (Names)	Coordinator(s)	Ritesh Kumar	Sharma			
	Teacher(s) (Alphabetically)	Ritesh Kumar	Sharma			

COURSE	OUTCOMES	COGNITIVE LEVELS
C433-2.1	To represent the systems in the Z domain and in state space	Remembering
	representation.	Level(C1)
C433-2.2	To analyze transient and steady state behaviors of linear discrete time	Analyzing
	control systems with modified transfer function.	Level (C4)
C433-2.3	To understand and gain knowledge in stability analysis of digital control	Understanding
	systems.	Level (C2)
C433-2.4	To Design Digital Control Systems	Designing
		Level (C6)

Module No.	Subtitle of the Module	Topics	No. of Lectures
1.	Review of Z transform	z transform and inverse z transform .Relationship between s- plane and z- plane- Difference equation .Solution by recursion and z-transform.	3
2.	Review of state space techniques	Review of state space techniques to continuous data systems, state space representation of discrete time systems- Transfer function from state space model-various canonical forms- conversion of transfer function model to state space model-characteristics equation- solution to discrete state equations.	5
3.	Introduction to Digital Control System	Basic Elements of discrete data control systems, advantages of discrete data control systems, examples. Signal conversion & processing: Digital signals & coding, data conversion & quantization, sample and hold devices, Mathematical modeling of the sampling process; Data reconstruction and filtering of sampled signals: Zero order hold, first order Hold.	8
4.	Analysis of Digital Control Systems	Digital control systems- Pulse transfer function . z transform analysis of closed loop and open loop systems- Modified z- transfer function- Stability of linear digital control systems and Jury's stability test	8
5.	Stability tests	Stability tests- Steady state error analysis- Root loci - Frequency domain analysis- Bode plots- Gain margin and phase margin.	8
6.	State feedback concept	Controllability and Observability - Response between sampling instants using state variable approach-Pole placement using state feedback.	5
7.	Digital System Design	Observer Design for digital control, Pole placement design based on input-output models.	5

			Total number of Lectures	42
Eval	uation Criteria			
Com	ponents	Maximum	Marks	
T1	-	20		
T2		20		
End S	Semester Examination	35		
TA		25		
Tota	l	100		
Proje	ect Based Learning: Stud	ents will learn	about the analysis and Design of Digital controller	rs with the help
of as	signments/simulations bas	ed projects. 7	The project work will consist of the system design	gn requirements,
simul	ation work using sci-lab o	r MATLAB, a	nd analysis of the simulation output.	
Reco	ommended Reading mate	erial: Author(s), Title, Edition, Publisher, Year of Publication etc.	(Text books,
Refe	rence Books, Journals, Rej	ports, Website	s etc. in the IEEE format)	
1.	B. C. Kuo, "Digital control	l systems" (Seco	ond Edition), Oxford University Press,2007.	
2.	K. Ogatta, "Discrete Time o	control systems	", 2nd ed. PHI),1995	

M. Gopal, "Digital Control and State Variable Methods", 3rd Edition, TMH, Sep-2008.
 G. F. Franklin, J. D. Powell, M. Workman, Digital Control of Dynamic Systems, 3rd Edition, Longman, 1998.

Detailed Syllabus

Course Code	19B12EC416	Semester odd	Semester VII Session 2022-2023
			Month from August 22 to December 22
Course Name	Deep Learning for Multim	edia	
Credits	3	Contact Hours	3-0-0

Faculty	Coordinator(s)	Dr Juhi Gupta	
(Names)	Teacher(s) (Alphabetically)		
COURSE C	DUTCOMES		COGNITIVE LEVELS
C430-2.1	Compare various loss learning approaches	s functions and optimization methods for deep	Understanding Level (C2)
C430-2.2	Experiment with varie	Applying Level (C3)	
C430-2.3	Apply and analyze see	quence models for natural language processing	Analyzing Level (C4)
C430-2.4	Utilize and compare v problems	various deep learning techniques in real life	Evaluating Level (C5)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Neural Networks, Loss Functions and Optimization	Neuron Model and Network Architectures: Perceptron and Hamming networks. Perceptron learning rule and proof of convergence. Performance surfaces and optimum points: Performance Optimization, Steepest Descent, Stable Learning Rates and Widrow-Hoff Learning.	13
2.	Backpropagation and Generalization	Backpropagation: Multilayer Perceptrons, Function Approximation, Performance Index, Chain Rule, Backpropagating the Sensitivities, Convergence, Generalization., Methods for Improving Generalization: Early Stopping, Regularization, Relationship Between Early Stopping and Regularization	8
3.	Convolutional Neural Network (CNN) Architectures	Review: Feed forward neural net, Layers for Conv Nets, Feature Maps and Pooling, FC layer to Conv layer conversion, CNN to Classify Text and Images: LeNet5, AlexNet, VGG, ResNet.	10
4.	Sequential Networks	Recurrent Neural Networks, Adding Feedback Loops and Unfolding a Neural Network, Long Short-Term Memory, Recurrent Neural Network for word predictions, Autoencoders, Different Autoencoder Architectures, Neural Language Models: Word Embeddings and Word Analogies, Word2vec.	10

		Total number of Lectures	41
Evaluation Criteria			
Components	Maximum Marks		
T1	20		
T2	20		
End Semester Examination	35		
ТА	25 [Assignments and Quiz]		
Total	100		

Project based learning: Each student in a group of 3-4 select a topic related to latest development in the technology and write done Algorithms and their corresponding code, This method of learning will help students to understand latest development in the industry once they land in to entry it will be a simple task to design and implement any given task. Knowledge acquired during this course will boost their confidence and clarity while attending any Interview related to placement activities and establishment of their own application based startup company related with latest and cutting edge technologies

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Introduction to Deep Learning, S. Kansi, Springer 2018
2.	Pattern Recognition and Machine Learning, C.M. Bishop, 2nd Edition, Springer, 2011.
3.	Deep Learning, I. Goodfellow, Y, Bengio, A. Courville, MIT Press, 2016.
4.	The Elements of Statistical Learning, T. Hastie, R. Tibshirani, J. Friedman., 2nd Edition, 2008
5.	Machine Learning Yearning, A. Ng, 2018

		Lecture m	be Di cuita		
Course Code	22B12EC412	Semester- Odd		Semester - Odd Semester - VII Session 2022-23	
		(specify Odd/Even)		(specify Odd/Even) Month from Aug to Dec	
Course Name	Introduction to Powe	r electronics			
Credits	3	Contact E		Hours	3
	1	1			
Faculty (Names)	Coordinator(s)	Dr. Ruby Beni	wal		
	Teacher(s) (Alphabetically)				

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Acquire knowledge about fundamental concepts and techniques used in power electronics	Understanding Level (C2)
CO2	Ability to analyze various single phase and three phase power electronics circuit and understand their applications	Analyzing Level (C4)
CO3	Ability to identify basic requirements for power electronics application.	Analyzing Level (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Overview of power electronics, Applications of Power Electronics, Types of Power Electronic Circuits, Peripheral Effects, Characteristics and Specifications of Switches.	4
2.	Power electronic devices	 Solid State Power Devices: Principle of operation of SCR, dynamic characteristic of SCR during turn ON and turn OFF, parameters of SCR, dv/dt and di/dt protection, snubber circuit, commutation circuits; Heat sink design. Modern Power Devices: Principle of operation of MOSFET, IGBT, GTO, MCT, SIT, SITH, IGCT, their operating characteristics. Power Transistors: Bipolar Junction Transistors – Steady State Characteristics, Switching Characteristics, Switching Limits. 	12
3.	Rectifiers	Controlled Rectifiers: Introduction, Single-Phase Full Converters, Single-Phase Dual Converters, Three-Phase Full Converters, Three- Phase Dual Converters.	8
		AC Voltage Controllers: Introduction, Single-Phase Full-Wave Controllers with Resistive Loads, Single-Phase Full-Wave Controllers with Inductive Loads, Three-Phase Full-Wave Controllers.	

4. DC-DC Converters:		Introduction, principle of step down and step up chopper with RL load, performance parameters, DC-DC converter classification.	9		
5. DC-AC converters		Introduction, principle of operation single phase bridge inverters, three phase bridge inverters, voltage control of single phase inverters, Harmonic reductions, Current source inverters.	9		
		Total number of Lectures	42		
Project Ba systems. St	sed Learning: S sudents can mode	tudents will be asked to do the analysis and designing of the power electrand and simulate the system using SPICE.	ronics		
Evaluation	n Criteria				
Componer	nts	MaximumMarks			
Mid-Term		30			
EndSemesterExamination		40			
ТА		30			
Total		100			
Recommended Reading material: Author(s) Title Edition Publisher Year of Publication etc. (Text books					

Refe	Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Bimbhra, P.S., <i>Power Electronics</i> , Khanna Publishers, 2021.				
2.	Rashid, M. H., Power Electronics: circuits, devices & applications, Pearson Education, 2014.				
3.	Luo F. L., Ye H., Advanced DC/DC Converters, CRC Press 2017				
4.	Mohan, N., Undeland, T. M., & Robbins, W. P., <i>Power electronics: converters, applications, and design</i> . John wiley & sons 2003.				

Subject Code	22B12EC413	Sem	ester ODD	Semester VII Session 20	22-23
		(spe	cify Odd/Even)	Month from August to December	
Subject Name	Low Power CMOS VLSI Circuit Design				
Credits	3 Contact Hours 3				
Faculty	Coordinator(s)				
(Names)	Teacher(s) (Alphabetically)				
S. No.			Course Outcom	nes	Cognitive Levels/
					Blooms Taxonomy
C431-2.1	Able to analyze th dynamic and static	e need powe	for low power VI or dissipation and f	LSI circuits and understand factors affecting them	Remembering Level (C1)
C431-2.2	Able to recognize design	role of	f simulation possil	ble at various levels of	Understanding Level (C2)
C431-2.3	Able to define Relationship of probability while calculating power dissipation of circuits and able to apply power reduction techniques possible at circuit and logic level				Applying Level (C3)
C431-2.4	Able to analyze clock as a major source of power dissipation and distinguish various methods to reduce powerAnalyzing Level			Analyzing Level (C4)	
Module No.	Subtitle of the Module	Торі	ics		No. of Lectures
1.	Introduction	Need powe Eme powe	for low power er dissipation on I rging Low power er dissipation in C	3	
2.	Device & Technology Impact on Low Power	Dyna sizin techi inno	amic dissipation g & gate oxide nology Scaling, vation.	in CMOS, Transistor e thickness, Impact of Technology & Device	3
3.	Power estimation : Simulation Power analysis and Probabilistic power analysis	SPIC simu state archi analy simu frequ techn	CE circuit simul lation, capacitive power, gate leve itecture level an ysis in DSP s lation. Random lo uency, probabil niques, signal entr	ators, gate level logic power estimation, static l capacitance estimation, alysis, data correlation systems. Monte Carlo gic signals, probability & istic power analysis opy.	8
4.	Low Power Design: Circuit level and Logic level	Powe Latch powe signa enco	er consumption i hes design, high er digital cells lib al gating, logic o ding, pre-computa	n circuits. Flip Flops & capacitance nodes, low rary Gate reorganization, encoding, state machine ation logic	8

5.	Low power	Power & performance management, switching	8	
	Architecture &	activity reduction, parallel architecture with		
	Systems:	voltage reduction, flow graph transformation,		
	~ j = = = = = = = = = = = = = = = = = =	low power arithmetic components, low power		
		memory design.		
6.	Low power	Power dissipation in clock distribution, single	6	
	Clock	driver Vs distributed buffers, Zero skew Vs		
	Distribution :	tolerable skew, chip & package co design of		
		clock network		
7	Algorithm &	Introduction, design flow, Algorithmic level	6	
7.	architectural	analysis & optimization, Architectural level		
	level	estimation & synthesis.		
	mothodologias :	-		
	methodologies.			
		Total number of Lectures	42	
Evaluation Crit	teria			
Components	Maxim	um Marks		
T1	20			
T2	20			
End Semester Examination 35				
ТА	25			
Total	100			
Project Based I	Learning: Student w	vill design and synthesize low power combinational and	d sequential circuits	
CMOS based circuits.				

Recommended Reading (Books/Journals/Reports/Websites etc.: Author(s), Title, Edition, Publisher, Year of Publication etc. in IEEE format)

Text:

1. Gary K. Yeap, "Practical Low Power Digital VLSI Design", KAP, 2012

2. Rabaey, Pedram, "Low power design methodologies" Kluwer Academic, 2012

References:

1. Kaushik Roy, Sharat Prasad, "Low-Power CMOS VLSI Circuit Design" Wiley, 2009

Course Code	22B12EC414	Semester: Odd 2022		Semes	ter: VII, Session: 2022-2023
				Month	from August to December, 2022
Course Name	Reliability Engineering and Life Testing				
Credits	3		Contact]	Hours	3
Faculty (Names)	Coordinator(s) Dr. Gaurav Khanna		anna		

Teacher(s) Dr. Gaurav Khanna	- wearby (- (minos)	0001 unit (0)	
(Apphabeticany)		Teacher(s) (Alphabetically)	Dr. Gaurav Khanna

COURSE	COGNITIVE LEVELS	
C431-3.1	Understand the fundamentals of reliability engineering and its application in critical real time scenarios.	Understanding Level (C2)
C431-3.2	Analyse the role of RAMS in simple and complex systems.	Analyzing Level (C4)
C431-3.3	Develop a comprehensive understanding of various reliability evaluation and life testing techniques.	Understanding Level (C2)
C431-3.4	Apply reliability analysis methods on time independent and time dependent failure models.	Applying Level (C3)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Background, causes of failures, need for reliability, availability, maintenance and safety (RAMS), quality, repairable and non-repairable systems, reliability characteristics, bathtub curve, component reliability and hazard models: parts count and parts stress, reliability improvement techniques.	8
2.	Statistical Methods in Reliability	Introduction to probability theory, random variables: PDF and CDF, Discrete and Continuous distributions – Binomial, Poisson, exponential, Weibull, Rayleigh, Gamma, Lognormal, rectangular.	6
3.	Reliability Modelling and Evaluation of simple and complex systems	Series, parallel, series-parallel, standby and k-out-of-m modelling. System reliability evaluation techniques including methods of bounds, decomposition, tie/cut sets, fault tree and transformation techniques. Sum-of-Disjoint Products technique for minimizing system reliability expression. Concept of conditional probability. Analysis of dependent failures. Reliability computations using similar and dissimilar stress-strength distributions (Exponential, Weibull, Normal and Gamma). Time- dependent stress-strength distributions, fatigue failures, Markov modelling.	12

4 Testing Methods		Reliability Testing, Life testing, requirements, methods, test planning, data reporting system, data reduction and analysis, reliability test standards.	8
5.	Reliability Economics and Management	Reliability costs, effect of reliability on cost, reliability achievement and utility cost models, cost effective choice of subsystems, replacement policies, management objectives, management's role in reliability and quality control.	8
		Total number of Lectures	42
Evaluatio	on Criteria	Total number of Lectures	42
Evaluatio Compone	on Criteria ents N	Total number of Lectures	42
Evaluatio Compone T1	on Criteria ents N	Total number of Lectures Iaximum Marks 20	42
Evaluation Component T1 T2	on Criteria ents N	Total number of Lectures faximum Marks 20 20	42
Evaluation Component T1 T2 End Seme	on Criteria ents N ester Examination	Iotal number of Lectures Iaximum Marks 20 20 35	42
Evaluation Component T1 T2 End Sement TA	on Criteria ents N ester Examination	Iotal number of Lectures Iaximum Marks 20 20 35 25 (10 Assignment, 10 Project, 5 Attendance)	42

Project Based Learning: Part of the final grade of this course is assigned to research project(s). Students will read and comprehend different research papers, implement them and write short summaries of the work. At the end of the term, students will present projects (along with computer simulation) in class. This will enable the students to become well-versed with different reliability evaluation philosophies. It will also help them to understand the failure data and learn to use some well-known reliability assessment and life data analysis tools. Summarily, this course will prepare the students to secure a job as a reliability engineer in the reputed MNCs like EATON, Alstom, and Philips.

Reco Refe	Recommended reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	V. A. Naikan, "Reliability engineering and life testing," PHI Learning Pvt. Ltd.; 2008 Dec 12.				
2.	C. E. Ebeling, "An introduction to reliability and maintainability engineering", Tata McGraw-Hill Education; 2017.				
3.	K. K. Aggarwal, "Reliability engineering", Springer Science & Business Media; 1993 Oct 31.				
4.	S. K. Chaturvedi, "Network reliability: measures and evaluation", John Wiley & Sons; 2016 May 31.				
5.	K. B. Misra, "Reliability analysis and prediction: A methodology oriented treatment", Elsevier; 2012 Dec 2.				
6.	E. A. Elsayed, "Reliability Engineering", Wiley, 3rd Edition, November 2020.				

Course Code	22B12EC415	Semester: Odd 2022		Semest	er: VII Session: 2022-23
				Month	from August to December
Course Name 5G Wireless Com		munication Syst	ems		
Credits 3		Contact Hours		Hours	3
	J				

Faculty	Coordinator(s)	Dr. Samriti Kalia
(Names)	Teacher(s) (Alphabetically)	Dr. Samriti Kalia

COURSE	COGNITIVE LEVELS	
CO 1	Understand basics, features and requirements of 5G wireless systems and its application in real time scenarios.	Understanding [Level II]
CO 2	Develop a comprehensive understanding of different types of 5G architectures, RAN and massive centralized RAN.	Analyzing [Level IV]
CO 3	Understand and Analyze various types of 5G enabling technologies including IOT for 5G and cognitive radio	Understanding [Level II]
CO 4	Understanding the role of mmwave communication in 5G wireless systems	Applying [Level III]

Modul e No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to 5G wireless systems	Introduction and motivation for 5G, Evolving LTE to 5G Capability, Spectrum for 5G, features and requirements of 5G, 5G standardization	8
2.	5G RAN architecture	Different architecture of 5G, Basics of RAN architecture, Functional architecture and 5G flexibility, Integration of LTE and new air interface to fulfill 5G requirements, Physical architecture and 5G deployment, Massive centralized RAN,	8
3.	5G Radio Access Technologies	Machine-Type Communication (MTC), Massive MTC, Device-to-device (D2D) communications, Multi-carrier with filtering-Filter-bank based multi-carrier, Universal filtered OFDM, Non-orthogonal multiple access (NOMA), Sparse code multiple access (SCMA), beam division multiple access	10
4	5G Enabling technologies	Ultra dense networks for 5G, massive MIMO, self cancellation techniques, concept of cognitive radio and spectrum sharing techniques for 5G, IOT for 5G	8

5.	mmWave Communication	Spectrum and regulations, Channel propagation, Hardware technologies for mmW systems, Beamforming architecture, Physical layer techniques.	8
		Total number of Lectures	42
Evaluati	ion Criteria		
Compon	ents	Maximum Marks	
T1 _		20	
T2		20	
End Sem	ester Examination	35	
TA		25 (10 Assignment, 10 Project, 5 Attendance)	
Total		100	

Project Based Learning: Students will learn about the basic features, requirements and spectrum of 5G. Further, they shall be able to learn the overall architecture of 5G in detail. Additionally, they will have deep knowledge about the enabling technologies used in 5G including spectrum sharing and IOT for 5G. Apart from that, they will also get to know the concept of mmwave communication for 5G.

Reco bool	commended reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text ks, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Afif Osseiran, Jose F. Monserrat, Patrick Marsch, "5G Mobile and Wireless Communications Technology", Cambridge University Press, 2016
2.	Erik Dahlman, Stefan Parkvall, Johan Sko ⁻ ld, "5G NR: The Next Generation Wireless Access Technology", Academic, Elsevier, 2018
3.	Hrishikesh Venkatarman and Ramona Trestian, "5G Radio Access Networks: Centralized RAN, Cloud-RAN, and Virtualization of Small Cells", Taylor and Francis, 2017
4.	Saad Z. Asif, "5G Mobile Communications Concepts and Technologies", CRC Press, Taylor and Francis, 2019

Course Co	de	15B19EC791	Semester Odd	1	Semeste	er VII Sessio	n 2022 -2023
			(specify Odd/	(specify Odd/Even) Month from August		t –December	
Course Na	me	Major Project Part-1					
Credits		4		Contact I	Hours		
Faculty (N	(ames)	Coordinator(s)	Dr. Megha Ag	garwal, Dr.	Rahul Ka	ushik	
	Teacher(s) (Alphabetically)Dr. Abhishek Kashyap, Mr. Shivaji Tyagi,						
COURSE	COURSE OUTCOMES COGNITIVE LEVELS			COGNITIVE LEVELS			
CO1	Summarize the contemporary scholarly literature, activities, and explored tools/ techniques/software/hardware for hands-on in the respective project area in various domain of Electronics Engineering.				Understanding (C2)		
CO2	O2 Analyze/ Design the skill for obtaining the optimum solution to the formulated problem with in stipulated time			Analyzing (C4)			
CO3	Evaluate /Validate sound conclusions based on evidence and analysis			Evaluating (C5)			
CO4	Develop the skill in student so that they can communicate effectively in both verbal and written form.				Create Level (C6)		

Evaluation Criteria		
Components	Maximum Marks	
Mid Sem Viva	20	
Final Viva	30	
Day to Day	30	
Project Report	20	
Total	100	

Detailed Syllabus

Course Code	15B19EC793	Semester -: Odd (specify Odd/Even)		Semeste Month-	er-: VII Session 2022-23 : August-December
Course Name	Summer Training Viva				
Credits	Qualifying		Contact I	Hours	-
Faculty (Names)	Coordinator(s)	Dr. Ashish Gu	ıpta, Mr. M	andeep N	arula
	Teacher(s)	Dr. Ashish Gupta, Mr. Mandeep Narula			

COURSE	OUTCOMES	COGNITIVE LEVELS
C455.1	Extend theoretical knowledge to real time Industry	Understanding Level (C2)
C455.2	Demonstrate the capacity for critical reasoning and independent learning	Understanding Level (C2)
C455.3	Make use of Industrial Training experience to prepare a scientific report	Applying Level (C3)
C455.4	Develop greater clarity about career goals in present condition	Applying Level (C3)
Evaluation	1 Criteria	
Componer	nts	Maximum Marks
Viva		25
Real world	idea and knowledge of Industry	25
Report		25
Diary		25
Total		100

Project Based Learning:

The scope of this subject is to aware the students from latest technology available in the industry and also to make them familiar with the working environment in the industry. Under this course students undergoes 6-8 weeks training from different industries as per their area of interests. Students often work on different projects assigned by the mentors available in the industry.

0 0		1 7 111 F C 110						•	2022 2022
Course Coue		17MIIECI18		(specify Odd/Even Month from August		essi ust (to December		
Course N	lame	ADVANCED	DIGITA	AL SIGNAL PRO	DCESSING				
Credits	Credits 3 Contact Hours 3			}					
Faculty (Names)	Coordinato	r(s)	Dr. Madhu Jai	n				
		Teacher(s) (Alphabetica	ally)	NIL					
COURSI At the end	E OUTCO	DMES emester, studen	its will be	e able to				C L	OGNITIVE EVELS
C110.1	Recall th Discrete	e principles of Fourier transfo	various	transform techn Fast Fourier Tra	iques like Z ansform.	Z, Chirp Z	, Hilbert,	Aj (C	pplying Level 23)
C110.2	Demonst FIR (Fin its struct	rate the ability ite Impulse Re ural realization	to apply sponse) a	v different metho and IIR (Infinite	ods to desig e Impulse R	gn and ana esponse)	lyze digital filters with	Ai Le	nalyzing evel(C4)
C110.3	Analyze	Multirate sign	al proces	sing and exami	ne its applic	cation.		An Le	nalyzing evel(C4)
C110.4	C110.4 Comprehend different methods for designing adaptive filters and examine its Analyzing Level(C4)			nalyzing evel(C4)					
Module No.	Title o Modu	f the le	Topics	Topics in the ModuleNo. of Lectures for the module				No. of Lectures for the module	
1.	Desigr FIR F	n of IIR and ilters	Digital filter or Fourier IIR Fii Approx approxi Bilinea Form I Structu Parallel	gital filter specifications, selection of filter type, and ter order, FIR filter design; using windowing Techniques, ourier Series and frequency sampling method, Design of R Filters Using Butterworth, Chebyshev and Elliptic opproximations, Frequency Transformation Techniques; oproximation of derivatives, Impulse invariant method, linear transformation, Structures for IIR Systems – Direct orm I & II, Cascade, Parallel, Lattice & Lattice-Ladder ructures, Structures For FIR Systems – Direct , Cascade, arallel, Lattice & Lattice ladder Structures.				12	
2.	Multin Signal	ate Digital Processing	Decima Identiti framew decima for Dec Decima Applica	mation & Interpolation, Sampling rate conversion, ities, polyphase decomposition, General polyphase ework for Decimator and Interpolator, Multistage nator and Interpolator, Efficient transversal structure Decimator and Interpolator, FIR and IIR structure for mator, Filter design for FIR decimator and Interpolator, ication of Multirate Signal processing.				12	
3.	Time- analy:	frequency sis	Uncert Proper Wigne Discret	ainty principle, Short-time Fourier transform, ies of STFT, Practical aspects of STFT, c-Ville distribution, Properties of WVD, e WVD, Psuedo and smooth WVD, Kernel Gabor wavelets multi-resolution analysis				10	

4.	4. Adaptive Filters Introduction, Application of adaptive filters, correlation structure, FIR Weiner Filter, Adaptive Direct-form FIR filters Adaptive Lattice-Ladder filters, Introduction to linear prediction, linear prediction and autoregressive modeling.				
		Total number of Lectures	44		
Eval	uation Criteria				
Com	ponents	Maximum Marks			
T1		20			
T2	~	20			
End	Semester Examination	35			
TA	1	25			
1014	▲	100			
syste phon funct of an imple taugh	systems that are used to condition, extract and interpret information bearing signal which is essential for smart phones, home appliances, biomedical devices and multimedia systems. These systems have dynamic transfer function whose frequency response are changed or controlled by varying certain variable parameters by means of an optimization algorithm. Student shall be given various practical situation-based design exercises to be implemented in MATLAB. This would enable them to recall and apply various techniques and algorithms taught in course to design and analyse the required system that meets the given technical specification.				
Deer		al. Author(a) Title Edition Dublisher Veer of Dublication at a	(Torrthealte		
Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	1. J.G. Proakis & D.G. Manolakis, "Digital Signal Processing, Principles, Algorithms and Applications", 4 th Edition, PHI, 2012				
2.	2. Aurelio Uncini, "Fundamentals of Adaptive Signal Processing", Springer Nature, Jan 2015.				
3.	Tulay Adah and Simon Wiley India, 2012.	Haykins, "Adaptive Signal Processing: Next Generati	on Solutions",		
4.	Franz Hlawatsch and Fra	inçois Auger," Time-Frequency Analysis", Wiley, 2013			

Course Code	20M41EC117	Semester: ODD	Semester: VII Session: 2022-23		
		(specify Odd/Even)	Month from Aug 2022 to Dec 2022		
Course Name	ADVANCED DIGITA	TAL COMMUNICATION SYSTEMS			
Credits	3	Contact Hours	3		
Faculty	Coordinator(s)	Dr. Ashish Goel			
(Names)	Teacher(s) (Alphabetically)	Dr. Ashish Goel			

COURSE	OUTCOMES- At the completion of the course, students will be able to	COGNITIVE LEVELS
C112.1	Understanding of line coding schemes and study of various issues related to ISI	Understanding Level (C2)
C112.2	Understand and analyse the Optimum filter realization for digital signals	Analyzing Level (C4)
C112.3	Understand the concepts of digital modulation techniques and evaluate their probability of error and bandwidth efficiency.	Evaluating Level (C5)
C112.4	Understanding of symbol and carrier synchronization and various equalization schemes.	Understanding Level (C2)
C112.5	Analyse different types of spread spectrum techniques.	Analyzing Level (C4)

Module No.	Title of the Module	Topics in the module	No. of Lectures for the module
1.	Waveform Coding and Baseband Shaping for Data Transmission	Overview of wave form coding scheme, Companding scheme for PCM system, Signal to Quantization Noise Ratio of Companded PCM system. Line codes and Power Spectral Density of line coding schemes, Intersymbol Interference: Ideal solution, Practical Solution and Correlative Coding. Eye pattern.	10
2.	Optimal Reception of Digital Signals	Baseband Signal Receiver, Peak signal to RMS Noise output Voltage Ratio, Probability of error, Optimum Threshold: Maximum Likelihood Detector and Bayes' Receiver, Optimal receiver design: calculation of the optimum filter transfer function, Optimum filter realization using Match filter, Probability of error of Matched filter, Optimum filter realization using Correlator	8
3.	Digital Modulation Techniques	Digital modulation formats, M-ray modulation techniques: Modulation, Demodulation, Power spectra, Bandwidth efficiency, symbol error probabilities. Channel capacity theorem for M-ary modulation formats. Minimum Shift keying: Effect of side lobes, MSK as FSK, Signal Space representation of MSK, Phase continuity in MSK, generation and reception of MSK, GMSK.	10

4.	Synchronization and Equalization	Synchronization: Phase Jitter in Symbol Synchronization, Carrier synchronization. Equalization: Maximum–Likelihood Sequence Estimation (MLSE), Linear equalization, Decision -feedback equalization, Reduced complexity ML detectors	7	
5.	Spread Spectrum Signals for Digital Communication	Model of spread spectrum digital communication system, Spreading code sequences; generation and properties: PN Sequence, Gold Code, Walsh Hadamard Code. Direct sequence spread spectrum signals; Frequency hopped spread spectrum signals, FDMA, TDMA, CDMA, Time hopping SS, Synchronization of SS systems.	7	
	Total number of Lectures42			

Project based learning: Here, students will learn the advanced concept digital communication starting from the basics process of modulation, demodulation and its impairment. These schemes are of utmost importance to understand the concepts of any current or future generations of communication system and to design the same . Student will be able to design the physical layer of digital communication and to analyze the effect of ISI, effect of noise and fading issues. Students can perform the some simulation on Matlab to analyze the same. Understating of these techniques will further help to work in any core communication industry.

Evaluation Criteria

Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
ТА	25(Attendance, Performance. Assignment/Quiz)
Total	100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	John G. Proakis, "Digital Communication", McGraw Hill, 5th edition, 2013.	
2.	H. Taub, D. L. Schilling and Gautam Saha, Principles of Communication Systems, 4 th /ed, TMH, 2017	
3.	S.Haykin, Digital Communication Systems ,John Wiley & Sons, 2013	
4.	Don Torrieri, " Principles of Spread-Spectrum Communication Systems ", Springer, 2015.	

Course Code	17B1NPH732	Semester: ODD		Semeste Month f	r: VII Session: 2022 -2023 from August to December
Course Name	Nanoscience and Tec	hnology			
Credits	3	Contact Hours 3		3	
Faculty (Names)	Coordinator(s)	Prof. Navendu Goswami Dr. Sandeep Chhoker			
	Teacher(s) (Alphabetically)	Prof. Navendu Goswami Dr. Sandeep Chhoker			

COURSE	OUTCOMES	COGNITIVE LEVELS
C401-4.1	Define the Nanoscience and Technology and to know about various other terminologies and developments involved with Nanoscience and Technology	Remembering (C1)
C401-4.2	Classify the nanomaterials depending on the nature of dimensionalities, type of materials classes and explain the basic concepts of nanomaterials	Understanding (C2)
C401-4.3	Apply the concepts of Nanoscience for solving the theoretical and numerical problems	Applying (C3)
C401-4.4	Determine the properties of nanomaterials through suitable characterization tools	Analyzing (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Development of nanoscience and nanotechnology, naturally occurring nanomaterials, Crystallinity of nanomaterials, Metallic nanostructures, Semiconductor nanostructures Magnetic nanomaterials, Chemically assisted nanostructures, Growth in 2-D nanostructures, Carbon nanomaterials	10
2.	Properties of Nanomaterials	Surface to volume ratio, Surface states and energy, Nanoscale oscillators, Confinement in nanostructures, Density of States and number of states of 0-, 1-, 2-, 3- dimensional systems, Change in Band structure and gap, Energy levels, confinement energy and emission in nano, Fluorescence by QDs, Concept of Single electron transistor	5
3.	Nanomaterials Synthesis	Introduction to synthesis techniques, Top down and bottom up approach, Biological methods, Sol-gel method, Nucleation and growth, Ball Milling technique, Chemical vapor deposition, Physical Vapor deposition: Concept of Epitaxy and sputtering, Basics of Photolithography and its limitations, Soft Lithography and Nanolithography	10
4.	Characterization of Nanomaterials	Resolving power (Rayleigh and other criteria) of microscopes and their limitations for nanostructure measurements, Concept of Far and Near field and modification by NSOM, Basic principle, Design of setup, Theory and working, Characterization procedure, result analysis, Merits/demerits of SEM, TEM, STM, AFM	5

5.	Application of Nanomaterials	Nanoelectronics, Nanobiotechnology, Catalysis by nanoparticles, Quantum dot devices, Quantum well devices High T _c nano-Superconductors, Nanomaterials for memory application, CNT based devices, MEMS and NEMS	10			
	Total number of Lectures 40					
Eval	uation Criteria					
Com T1 T2 End S TA TA	ComponentsMaximum MarksT120T220End Semester Examination35TA25 [PBL (6 M), 2 Quiz (7 M), Attendance (7 M) and Internal Assessment (5 M)]Total100					
Reco Refer	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	. Nanostructures and nanomaterials: synthesis properties and application, Guozhong Cao, Imperial college press, London.					
2.	Introduction to nanotechnology, Charles Poole et al J John Wiley & Sons, Singapore.					
3.	3. <i>The Handbook of Nanotechnology: Nanometer Structures, Theory, Modeling, and Simulation,</i> A. Lakhtakia, Spie Press USA.					
4.	Springer Handbook of Nanotechnology, Edited by B. Bhushan, Springer Verlag.					

Project based learning: Students would work on a project of their choice in the field of Nanoelectronics, Nanobiotechnology, Catalysis by nanoparticles, Quantum dot devices, Quantum well devices, High Tc nano-Superconductors, Nanomaterials for memory application, CNT based devices, MEMS and NEMS. In such projects students can apply the basic concepts of Nanoscience for solving theoretical and numerical problems. They can also work on analysis of a nanomaterial to determine its properties through suitable characterization tools such as SEM, TEM, AFM etc. The learning gained through this project would consolidate the understanding and provide skills of analysis and application in Nanoscience and Technology and thereby providing the employability prospects in the organizations and industries involved in the research and development of nanomaterials synthesis and characterizations, nanoelectronics, nanobiotechnology/nanomedicine etc.

Course Code	18B12CS424	Semester: Odd	ł	Semeste	er: VII Session: 2022-23
NBA Code	C440			Month	from Aug 22 to Dec 22
Course Name	Algorithm Analysis and Artificial Intelligence				
Credits	3 Contact Hours 3		3-1-0		
Faculty (Names)	Coordinator(s) Prof. Satish Chandra (J62) / Dr. Gaurav Kumar Nigam (J128)		urav Kumar Nigam (J128)		

Teacher(s)
(Alphabetically)Prof. Satish Chandra (J62) / Dr. Gaurav Kumar Nigam (J128)

COURSE O	UTCOMES	COGNITIVE LEVELS
C401-12.1	Analyse algorithm's time complexities (Master's method, Recursion tree and substitution method. Sorting and Searching algorithms)	Analyse Level (Level 4)
	the and substitution method sorting and searching argorithms)	
C401-12.2	Propose solutions for real life computing problems using greedy,	Create Level (Level 6)
	divide & conquer, and dynamic programming techniques.	
C401-12.3	Apply informed and uninformed searching algorithms(A*, Hill	Apply Level (Level 3)
	Climbing and Simulated Annealing) in AI related problems.	
C401-12.4	Solve constraint satisfaction problems and adversarial search	Create Level (Level 6)
	algorithms	
C401-12.5	Apply inference mechanisms(propositional logic , first order	Apply Level (Level 3)
	predicate logic, and probabilistic reasoning)	
C401-12.6	Design and simulate Genetic Algorithms for Optimization.	Create Level (Level 6)

Sr.	Module	Chapters	Lectures
1.	Introduction	Time Complexity analysis: Master's Method. Divide and Conquer methods: Insertion Sort, Merge Sort, Quick Sort	06
2.	Divide and Conquer and Greedy Algorithms	Strassen's Matrix multiplication , Knapsack Problem; Coin change Problem; Huffman Coding; Activity Selection; Minimum Spanning tree etc.	09
3.	Dynamic Programming Algorithms	Knapsack Problem; Coin change Problem; Matrix chain Multiplication, Longest common subsequence etc.	05
4.	Artificial Intelligence : Problem Spaces and Problem Solving by search	State Spaces, Uninformed search strategies (BFS, DFS, DLS, IDS, Bidirectional search),Informed Search & exploration (A*,Heuristic, Local search algorithms, online search agents)	07
5.	Constraint satisfaction problems	Constraint satisfaction problems (backtracking, variable and value ordering, local search), Adversarial Search (games, alpha beta pruning, elements of chance, state of art games)	06
6.	Propositional Logic	Knowledge based agents, PL, FOPL, Syntax and semantics, use, knowledge engineering) , Inference in FOPL(Propositional vs First order inference	06
7.	Uncertainty	Probabilistic reasoning, Bayesian rule, Bayesian network, Inference, Reasoning over time	03
8.	Genetic Algorithms	Travelling Salesman Problem, Knapsack Problem	01
		Total number of Lectures	43

Evaluation Criteria	
Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
ТА	25(Attendance-10Quiz/Assignments/Presentations/Mini-Project-15)
Total	100

Project based learning: Each student understood on the application of Artificial Intelligence for algorithmic optimization. They presented the application by a power-point presentation. It can help improve the efficiency of the real life projects in the real world IT organizations.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc.

TEXT BOOKS

1.	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms, MIT Press, 3rd Edition, 2009
2.	Artificial Intelligence – A modern approach by Stuart Russel and Peter Norvig, PHI, 2008.
REF	ERENCE BOOKS Journals, Reports, Websites etc. in the IEEE format
3.	Artificial Intelligence Review: An International Science and Engineering Journal, Springer
	Nunes de Castro, Leandro, "Nature-Inspired Computing Design, Development, and Applications" IGI
<i>4</i> .	Global, 31-May-2012 - 435 pages
5.	Steven Skiena ,The Algorithm Design Manual, Springer; 2nd edition , 2008
6.	Knuth, The art of Computer Programming Volume 1, Fundamental Algorithms, Addison-Wesley Professional; 3 edition,1997
7.	Horowitz and Sahni, Fundamentals of Computer Algorithms, Computer Science Press, 1978

Lecture wise breakup						
Course Code	20B12PH411	Semester ODD		Semester VII Session 2022-2023		
				Month	from August to December	
Course Name	SUPERCONDUCTING MATERIALS, MAGNETS AND DEVICES					
Credits 3		Contact Hours 3		3		
Faculty (Names) Coordinator(s) Dr. Dinesh Tripathi						

Teacher(s) (Alphabetically)

NA

COUR	SE OUTCOMES	COGNITIVE LEVELS
CO1	Define unusual properties exhibited by superconducting materials and how these properties are important in the development of superconducting Devices.	Remember Level (Level 1)
CO2	Explain the theories of superconductivity, the basic and operating parameters of superconductors, their classifications and design limitations for superconductor's applications-devices.	Understand Level (Level 2)
CO3	Solve the various issues related to fabrication of superconducting wires, tapes, design of superconducting magnets and devices.	Apply Level (Level 3)
CO4	Examine the potential use of low Tc and high Tc superconductors for designing both small and large scale applications.	Analyze Level (Level 4)

Modu le No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Basic properties of Superconducting materials	Historical review, the state of zero resistance, Perfect Diamagnetism, Meissner effect, London's theory, Penetration depth, Concept of coherence length and origin of surface energy, Intermediate and mixed states, Critical currents and critical fields, Outlines of B-C-S theory, concept of energy gap, Levitation force of superconductors, Tunneling in superconductors: Gaiever tunneling and Josephson tunneling	10
2.	Classifications & synthesis of Superconducting materials	Type I and Type II superconductors, Classification of superconducting materials, Conventional superconductor: metals (Pb, Nb, Ti etc.), metal alloys (NbTi, Nb3Sn etc.) and Inter-metallic superconductors (MgB2); Non-conventional Superconductors: Oxide based superconductors (BSCCO, YBCO), iron pnictides superconductors, Fabrication of superconducting wires & tapes.	10
3.	Design of Superconducting magnet	Flux flow, Flux pinning, Pinning force, Magneto-thermal Instabilities in Type II superconductors, Flux Jumps, Stabilization Criterion: Cryostatic and dynamic stabilization, Manufacture of long length superconducting multifilamentary wires, Design and fabrication of superconducting magnets, Magnetic field calculations, current leads, Persistent switches, and superconducting magnet energization.	12

4.	Superconducting devices	Josephson junction in magnetic field, Superconducting Quantum Interference Devices (SQUIDS) and its applications, Superconductive Switches, Infrared detectors Superconducting energy storage system (SMES), Fault current limiters (SFCL), Maglev trains	8
		Total number of Lectures	40
Evaluat	tion Criteria		
Compo	nents	Maximum Marks	
T1		20	
T2		20	
End Semester Examination		35	
ТА		25: Quizzes (7 marks), Attend. (7 marks), PBL (6 marks) and class performance (5 marks)	3
Total		100	
D • 4			1

Project based learning: To make a better understanding about the subject, groups of 4-5 students will be formed and a project on materials and applied superconductivity viz. synthesis technique of superconducting materials, fabrication of superconducting wires and tapes, design of superconducting magnet, SQUID, SFCL, SMES, IR detector, Superconducting switches, Maglev etc. will be allotted to each of the groups. The students will collect all the information's and understand about the basic principle, fabrication process and current research activities going on in the particular field. The students will also be encouraged to explore the field and create interactive simulations based on these devices.

Reco	Recommended Reading material:				
1.	Roseins & Rhodrih, Introduction to Superconductivity, 2 nd Edition, Pergamon Press plc				
2.	Vladimir Z. Kresin & Stuart A. Wolf, Fundamentals of Superconductivity, Springer Science & Business Media				
3.	Williams, Applied Superconductivity, Academic press New York.				
4.	M. N. Wilson, Superconducting Magnet Design (Monographs on Cryogenics), Clarendon Press, Oxford Science Publications				

				1			
Course	e Code	le22B12MA411Semester: OddSemester VIISessitiveMonth from Aug 20		II Session- 2022-23 n Aug 2022 – Dec 2022			
Course	e Name	Advanced Statistic	Advanced Statistical Methods				
Credits		3	Contact Hours		3-0-0		
E14		Coordinator(s)	Dr. Shikha Pandey				
(Name	y s)	Teacher(s) (Alphabetically)	Dr. Shikha Pandey				
COUR	COURSE OUTCOMES COGNITIVE LEVELS						
After p	After pursuing the above mentioned course, the students will be able to:						
CO1	Apply univariate statistics in Time series, control charts.Applying Level (C2)						
CO2	Apply linear and normal regression to fit data.Applying Level (C2)						
CO3	Understand multivariate statistics related statistical Understanding Lev (C2)				Understanding Level (C2)		
CO4	Apply hypothesis testing for mean and variance in multivariate data.Applying Level (C3)			Applying Level (C3)			

Course Description Lecture wise Breakup

Modul e No.	Title of the Module	Topics in the Module	No. of Lectures
1.	Univariate Statistics	Univariate descriptive statistics, central limit theorem, Sampling Distribution associated with normal population, Sampling distributions, (chi square, t, F and Z) and hypothesis tests, Time Series: Components, Measurement of trends by graphical method and method of semi averages, Techniques of statistical quality control, control charts for variables and attributes.	12
2.	Regres sion analysi s	Linear Regression, Least Squares Estimation, Normal Regression, Tests of hypothesis for regression coefficients and mean.	8
3.	Introduction to Multivariate Statistics	Introduction of random vectors, Descriptive Statistics, Covariances, Correlations matrices, Multivariate normal distribution.	10

4.	Multivariate Hypothesis Testing	Tests of hypothesis: Tests on μ with Σ Known and Σ unknown (Hotelling T ² statistic) of a multivariate normal population, one way and two- way analysis of variance (ANOVA) (populations with equal variance), Wilk's test statistic.	12	
Total nu	mber of lectur	res	42	
Evaluati	on Criteria			
Compon	ents	Maximum Marks		
T1		20		
T2		20		
End Sem	ester Examinat	ion 35		
TA		25 (Quiz, Assignments)		
Total		100		
Project I hypothes	based learning is testing.	: Students in groups will collect multivariate data and use	t for	
Recommetc. (Tex	ended Readin t books, Refere	g material: Author(s), Title, Edition, Publisher, Year of Ionce Books, Journals, Reports, Websites etc. in the IEEE f	Publication format)	
1.	T. W. Anders	son, Introduction to multivariate analysis, John Wiley, 19	984.	
2.	Biswas and S Publishing Ho	Srivastava , A Textbook, Mathematical Statistics 1 st Edition Duse, New Delhi, 2011.	n, Narosa	
3.	A. M. Kshirsagar, Multivariate analysis, Marcel Dekker, 1983.			
4.	R. A. Johnson and D. W. Wichern , <i>Applied multivariate statistical analysis</i> , Prentice hall Inc., 1988.			
5.	D. F. Morrison , <i>Multivariate Statistical Methods</i> , McGraw Hill Co.,3rd ed., 1990.			
6.	W. K. Hardle and L. Simar, <i>Applied Multivariate Statistical analysis</i> , Springer, New York, 2019.			
7.	Alvin C. Ren SONS, INC. I	cher , <i>Methods of Multivariate Analysis</i> , A JOHN WILEY PUBLICATION, Newyork, 2001.	<i>l</i> &	