Detailed Syllabus

Course Code	15B1NHS832	Semester Even (specify Odd/Even)		Semester VIII Session 2023-2024 Month from Feb-June 2023	
Course Name	International Studies				
Credits	3	Contact Hours 3(3-0-0)		3(3-0-0)	

Faculty (Names)	Coordinator(s)	Dr. Ila Joshi/ Dr Gaurika Chugh
	Teacher(s) (Alphabetically)	Dr. Gaurika Chugh/ Ila Joshi

CO Code	COURSE OUTCOMES	COGNITIVE LEVELS
C402-8.1	Demonstrate an understanding of the basic concepts in the area of international studies	Understanding (C2)
C402-8.2	Compare the changes in India's foreign policy in the Cold War era and the post Cold War era	Applying (C3)
C402-8.3	Analyze the major political developments and events since the 20 th century	Analyzing (C4)
C402-8.4	Demonstrate an understanding of the rise of new power centres in the changing world order	Understanding (C2)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Basic Concepts	Balance of power and Collective security National Interest and its instruments	4
2.	An Overview of Twentieth Century International Relations History	World War I: Causes and Consequences Significance of the Bolshevik Revolution Rise of Fascism / Nazism World War II: Causes and Consequences	8
3.	Cold War Politics	Origin of the Cold War Evolution of the Cold War Collapse of the Soviet Union Causes of the End of the Cold War	8
4.	India's foreign policy during the Cold War era	Basic Determinants (Historical, Geo-Political, Economic, Domestic and Strategic) India's Policy of Non-alignment	6
5.	India's foreign policy in the Post- Cold War era	India and SAARC India and the Look East policy Impediments to regional co-operation: river water disputes; illegal cross-border migration; ethnic conflicts and insurgencies; border disputes	8
6.	Emergence of Other Power Centres	European Union Rise of Asia Powers- Russia, China and Japan	8
		Total number of Lectures	42

	Evaluation Criteria	
Components	Maximum Marks	
T1	20	
T2	20	
End Semester Examination	35	
TA	25 (Project/ Quiz/Attendance)	
Total	100	

Project Based Learning: Each student would form a group of 3-4 and submit projects on India's foreign policy and rise of new power centres. This project would help the students' research about the India's relations- economic, political and diplomatic and also consider a variety of perspectives and interpretations of current world events.

	commended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, brence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	A. Chatterjee, International Relations Today. Noida, India: Pearson, 2019
2.	Appadorai, &M.S.Rajan, <i>India's Foreign Policy and Relations</i> . New Delhi, India: South Asian Publisher, 1985
3.	E.H. Carr, International Relations between the Two World Wars: 1919-1939. New York, USA: Palgrave, 2009
4.	J. Baylis &S. Smith, Ed. <i>The Globalization of World Politics: An Introduction to International Relations</i> . Oxford, UK: Oxford University Press, 2011
5.	P. Calvocoressi, World Politics: 1945—2000. Essex, UK: Pearson, 2009
6.	P.Zelikow, <i>The Road less travelled: The secret battle to end the great war,1916-17.</i> New York, USA: Public Affairs, 2021
7.	R,Cooper, <i>The Ambassadors: thinking about diplomacy from Machiavelli to modern times</i> . London,UK: Weidenfeld & Nicolson, 2021

Course Code	16B1NHS831	Semester: Odd (specify Odd/Even)			er: VIII Session 2022 -2023 JAN 2023 –JUNE 2023
Course Name	Gender Studies				
Credits	3	Contact Hours 3-0-0		3-0-0	

Faculty (Names)	Coordinator(s)	Prof Alka Sharma
	Teacher(s) (Alphabetically)	Prof Alka Sharma
		Shikha Kumari

COURSE OUTC	COURSE OUTCOMES	
C401-19.1	Demonstrate knowledge of the construct of gender and the way itintersects with other social and cultural identities ofrace, class, ethnicity andsexuality	Understand(C2)
C401 - 19.2	Apply feminist and gender theory in an analysis of gender including an examination of the social construct of femininity andmasculinity	Apply (C3)
C401- 19.3	Analyze the ways in which societal institutions and power structures such as the family, workplace impact the material and social reality of women's lives	Analyze (C4)
C401-19.4	Assess the need for Gender Sensitization and Gender Inclusivity and its practice in contemporarysettings	Evaluate (C5)
C401- 19.5	Evaluate and interpret information from a variety of sources including print and electronic media, film, video and other information technologies	Evaluate (C5)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introducing Gender Issues	 Sex andGender Types ofGender Gender Roles Gender Division ofLabor Gender Stereotyping and GenderDiscrimination 	9
2.	Gender Perspectives of Body & Language	 Biological, Phenomenological and Socio-Cultural Perspectives ofbody Body as a Site and Articulation of PowerRelations Cultural Meaning of Female Body andWomen"s Lived Experiences The Other andObjectification 	6
3.	Social Construction of Femininity &Feminism	 Bio-Social Perspective of Gender Gender as Attributional Fact Feminine & Feminist Major Theorists of Feminism Challenging Cultural Notions of Femininity Feminism Today: Radical, Liberal, Socialist, Cultural, Eco feminism & Cyberfeminism Images of Women in Sports, Arts, Entertainment, Media and Fashion Industry; Cultural Feminism& 	9

Compo T1 T2		MaximumMarks 20 20 35 25 (Project/ Assignment)	
Evalua	tion Criteria	Total number of Lectures	42
5.	Gender Sensitization Empowerment &Gender Inclusivity	 Women & Women Rights InIndia From Women's Studies to Gender Studies: A ParadigmShift Gender Sensitization & Gender Inclusivity Gender Studies & Media: Creating NewParadigms in Gender & Culture 	9
4.	Social Construction of Masculinity	Celebrating Womanhood	9

Total 100

Students will be given a project on the construction of gender and how does the major institution of the society has shaped their gender.

	ommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, rence Books, Journals, Reports, Websites etc. in the IEEE format)
1	Davis K., et al, "Handbook of Gender and Women's Studies. London: Sage. (2006)
2	Helgeson, Vicki S., "The Psychology of Gender", Pearson(2012)
3	Friedan B., "The Feminine Mystique", Penguin. (1971/1992)
4	DebeauvoirS., "The Second Sex", Vintage (1953/1997)
5	Wharton Amy S., "The Sociology of Gender: An Introduction to Theory & Research", Wiley-Blackwell (2005)
6	Pachauri G.," Gender, School & Society", R.Lall Publishers (2013)
7	Connell R.W, "Masculinities", Cambridge: Polity. (1985)
8	MacInnes J., "The End of Masculinity". Buckingham: Open University Press. (1998)
9	Kaul A.& Singh M., "New Paradigms for Gender Inclusivity", PHI Pvt Ltd (2012)

Subject Code	17B1NHS732	Semester: Even	Semester: 8 th Session: 2022 -2023 Month: January to June
Subject Name	INDIAN FINAN	ICIAL SYSTEM	
Credits	3	Contact Hours	3 (3-0-0)

Faculty	Coordinator(s)	1. Dr. Mukta Mani (Sec 62) 2. Dr Sakshi Varshney (Sec 128)
(Names)	Teacher(s) (Alphabetically)	2. Dr Mukta Mani 2. Dr Sakshi Varshney

NBA Code	Course Outcomes	Cognitive Level
C402-31.1	Understand the interlinkage of components of the financial system and financial instruments of the Money market and Capital market.	C2
C402-31.2	Analyze ways of fundraising in domestic and international markets	C4
C402-31.3	Understand the functioning of the Stock market and evaluate securities for investment.	C5
C402-31.4	Apply the knowledge of Mutual Funds and Insurance in personal investment decisions	C3
C402-31.5	Apply knowledge of Income tax for the calculation of the tax liability of an individual.	C3

Module No.	Subtitle of the Module	Topics in the module	No. of Hours
1.	Introduction	Meaning, Importance, and functions of Financial system. Informal and Formal financial systems, Financial markets, Financial Institutions, Financial Services and Financial instrument	3
2.	Money Market	Features of money market Instruments: Treasury bills, commercial bills, commercial papers, certificates of deposit, call and notice money, Functions of money market, Linking of money market with Monetary policy in India	3
3.	Capital Market	Features of Capital market instruments: Equity shares, Bonds. Fundraising through Initial Public Offering, Rights issue, Preferential allotment and Private Placement. Process of IPO-Intermediaries in IPO, Book building process and allotment of shares	3

4.	Foreign investments in India	Fundraising from the foreign market through Foreign direct investment and foreign institutional investment, ADR, GDR, ECB, and Private equity.	3
5.	Stock Market	Trading in the secondary market- Stock exchanges, regulations, demutualization, broker, a listing of securities, dematerialization, trading, short selling, circuit breaker, stock market indices- methods of calculation of indices.	3
6.	Stock Valuation and Analysis	Investing basics: Consideration of Risk and Return, Stock Valuation and Analysis- Fundamental analysis: Economy, industry and company analysis; Technical Analysis of stocks using technical charts	7
7.	Investing in Mutual Funds and Insurance	Mutual Funds: Basics, Types of funds, risk and return considerations in the selection of funds; Insurance: Basics, Life insurance and health insurance, types of policies	6
8.	Overview of Income Tax	Basics of Income tax Concept of the previous year, assessment year, person, income. Calculation of Income tax liability for individuals: Income from salaries- basic, DA, HRA, leave salary, Gratuity, Pension, Allowances and Perquisites; Income from Capital Gain, Deductions under sections 80C to 80U.	14
Total number of Lectures			42
Evaluation Criteria			
Componen	nts	Maximum Marks	
$egin{array}{cccccccccccccccccccccccccccccccccccc$			
End Semester Examination 35			
TA 25 (Project, Class participation and Attendance)			
Total		100	

Project-Based Learning: The students will form groups of 4-5 students. They will carry out a stock analysis of a selected company on the basis of fundamental and technical analysis techniques studied in lecture classes. Finally, they will give their recommendation about the performance of the stock.

Rec	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc.		
(Tex	(Textbooks, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1	Pathak Bharti V, <i>Indian Financial System</i> , 5 th Edition, Pearson Education, 2018		
2	Madura Jeff, <i>Personal Finance</i> , 6 th Ed, Pearson Education, 2017.		
3	Machiraju H R, <i>Indian Financial System</i> , 5 th Ed, Vikas Publication, 2019		

4	Bhole L M and Mahakud, J., <i>Financial Institutions and Markets</i> , 5 th ed. Tata McGraw Hill Publication, 2017.
5	Singhania & Singhania, Students Guide to Income Tax, 67 th Edition, Taxmann Publication, August 2022.
6	How to Stimulate the Economy Essay [Online] Available: https://www.bartleby.com/essay/How-to-Stimulate-the-Economy-FKJP5QGATC
7	Reserve Bank of India, 'Money Kumar & the Monetary Policy', 2007
8	Ashiwini Kumar, Sharma, 'De-jargoned: Book building process, Live Mint, 2015.
9	Madhavan, N. "Pushing the accelerator instead of brakes: Can Subhiksha make a comeback?", Business Today, 28 th June 2009.
10	Kaul, Vivek, "Master Move: How Dhirubhai Ambani turned the tables on the Kolkata bear cartel", The Economic Times, July 1, 2011.

Course Description

Subject Code	18B12HS815	Semester Even	Semester VIII Session 2022-23 Month from Jan to June 2023
Subject Name	QUALITY ISSUES IN ENGINEERING		
Credits	3 (3-0-0)	Contact Hours	3-0-0

Faculty	Coordinator(s)	Dr. Akarsh Arora
(Names)	Teacher(s) (Alphabetically)	Dr. Akarsh Arora

COURSE OU	COGNITIVE LEVELS	
C402-32.1	Apply the concepts of quality within quality management systems by understanding various perspectives, historical evolution; and contributions of key gurus in the field of quality	Apply Level (C3)
C402-32.2	Determine the effectiveness of acceptance sampling using single and double sampling plans and operating characteristic curves	Evaluate Level (C5)
C402-32.3	Determine quality by employing a wide range of basic quality tools, lean concepts and process improvement techniques such quality function deployment	Evaluate Level (C5)
C402-32.4	Examine the importance of six sigma, various quality standards, awards, certifications	Analyze Level (C4)

Module No.	Subtitle Of The Module	Topics In The Module	No. Of Lectures For The Module
1.	Fundamentals And Evolution Of Quality	Introduction, Dimensions Of Quality, Fundamentals, History Of TQM, Contemporary Influences	6
2.	5	Various Costs, Juran's Coq Accounting Statement, Voice Of Customers: Kano's Model, House Of Quality, QFD Process, Seven Tools For Quality Management	9
3.	Benchmarking	Meaning, Process, Methods	3
4.	Quality Gurus	Contribution of Quality Gurus	3
5.	Six Sigma	Six Sigma, Capability Of A Process/Product/Service, DMAIC Process	6
6.	Lean Concepts	Kaizen, Poka-Yoke, Andon, Kanban, JIT, 5-S, 7 Mudas	3
7.	Statistical Thinking And Applications	Statistical Process Control, Acceptance Sampling, Specification And Control Limits, Control Charts For Variables, Control Charts For Attributes	6

8.	Quality Awards And Certifications	MBNQA, RGNQA, Deming Prize, ISO Standards	3
9.	Quality Strategy For Indian Industry	India's Quality Journey, Quality Management In India	3
Total Number Of Lectures			42

Project-based Learning: Students are required to visit any business organization to observe the brief about the organization; its products; its suppliers; its operations; its processes, Quality control system and techniques followed by the company, Quality standards met by the company, application of quality tools or lean manufacturing system, Sigma capability of products or processes, DMAIC methodology, application and relevance of the quality concepts studied in the course. Collecting information on quality systems, quality standards, quality certifications or awards received, and sigma capability will upgrade students' knowledge and strengthen their skills to tackle multiple quality engineering issues along with employability.

Evaluation Criteria	a e e e e e e e e e e e e e e e e e e e	
Components	Maximum Marks	
T1	20 (Written)	
T2	20 (Written)	
End Term	35 (Written)	
TA	25 (Project Assignment, Quiz)	
Total	100	

Reco	ommended Reading material:
1.	Besterfield D. H., Besterfield-Michna C., Besterfield G. H., Besterfield-Sacre M. Total quality management, Prentice Hall, 1999.
2.	Evans, J. R., Dean J. W. Total quality management, organization and strategy, Thomson, 2003. 399 p.
3.	Kanji G. K., Asher M. 100 Methods for Total Quality Management. London: SAGE Publications, 1996.
4.	Oakland G. F. Total Quality Management, Oxford, 1995.
5.	Goetsch D. L., Davis S. B. <i>Quality management. Introduction to TQM for production, processing and services.</i> New Jersey: Prentice Hall, 2003.
6.	John S. Oakland. <i>Total Quality Management and Operational Excellence</i> : Text with cases, Fourth edition, 2014
7.	Dale H. Besterfield. Total Quality Management, (Revised Edition). India: Pearson, 2011.

Course Code	18B12PH811	Semester Even (specify Odd/Even)			Gemester VIII Session 2022 -2023 Month from January to June	
Course Name	Photonics and Applications					
Credits	3	Contact Hours		3		

Faculty (Names)	Coordinator(s)	Navneet Kumar Sharma
	Teacher(s) (Alphabetically)	Navneet Kumar Sharma

COURSE	OUTCOMES	COGNITIVE LEVELS	
C402-3.1 Recall the fundamental properties of light and the processes involved in the generation of light		Remember Level (C1)	
C402-3.2	Interpret the theory of fiber optics	Understand Level (C2)	
C402-3.3	Apply the fundamentals of various nonlinear optical effects in technology; make use of holography and its applications	Apply Level (C3)	
C402-3.4	Compare the operational principles, characteristics and trade-offs of optical detectors and modulators of light	Analyze Level (C4)	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module		
1.	Lasers	Review of different types of laser systems. LEDs, Semiconductor lasers, Quantum well lasers, Modes of laser cavity, Q-switching and Mode locking in lasers.	8		
2.	Fiber Optics	Numerical aperture, Step and graded index multimode fibers, attenuation and dispersion, modes in optical fibers. Single mode fiber, mode cutoff and mode field diameter. Connector and splice losses, Erbium doped fiber amplifier and Characterization techniques including OTDR.	10		
3.	Photo detectors	Semiconductor photo detectors.	5		
4.	Optical Electronics	Wave propagation in anisotropic media, Electro-optic effect: phase and amplitude modulation. Acousto-optic effect: modulators, deflectors and tunable filters, Magneto-optic effect: modulators.	4		
5.	Optical devices	Electro-optical device, Acousto-optical device, Magneto-optical device, Voice communication, Optical communication.	2		
6.	Nonlinear Optics	SHG, Sum and Difference frequency generation, parametric amplification, wavelength converters, Self focusing with lasers.	6		
7.	Holography	Recording and Reproduction of Hologram, Applications of holography.	4		
8.	Applications of Photons in Memory devices	CD, VCD, DVD.	1		
	Total number of Lectures				

Evaluation Criteria	
Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
TA	25 [Attendance (05 M), Class Test, Quizzes <i>etc</i> (06 M), Assignments in PBL mode (10 M) and Internal assessment (04 M)]
Total	100

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	1. R. P. Khare, Fiber Optics and Optoelectronics, Oxford University Press.				
2.	2. A. K. Ghatak and K. Thyagarajan, <i>Optical Electronics</i> , Cambridge university Press.				
3.	3. A. K. Ghatak and K. Thyagarajan, <i>An Introduction to Fiber Optics</i> , Cambridge university Press.				
4.	B. B. Laud, Lasers and Nonlinear Optics, New Age International.				

Project based learning: Each student in a group of 4-5 students will opt a topic and will do the theoretical study in detail. The students will submit their report. To make the subject application based, the students analyze the optical fiber applications, holography applications and use of photons in memory devices. This shall improve the skills and employability of the students in laser and photonic industries.

Course Code	18B12PH812	Semester: Even			er: 8, Session: 2022-2023 from: January to June
Course Name	Astrophysics				
Credits	3		Contact Hours		3
Faculty (Names)	Coordinator(s) Prof. Anirbar		Pathak		
	Teacher(s) (Alphabetically)	Anirban Pathak			

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Relate historical development of astrophysics with the modern concepts and recall the mathematical techniques used & definition of different units	Remembering (C1)
CO2	Explain the models of universe, ideas of stellar astrophysics, life cycles of stars, physical principles that rules galaxies, and general theory of relativity	Understanding (C2)
СОЗ	Apply mathematical principles and laws of physics to solve problems related to astrophysical systems	Applying (C3)
CO4	Compare different models of universe and decide which one is logically acceptable and why	Analyzing (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1	Introduction to Astrophysics	Historical development of astrophysics (from mythology to contemporary astrophysics), Mass, length and time scales in astrophysics, sources of astronomical information (effect of discovery of spectroscopes and photography), astronomy in different bands of electromagnetic radiation (e.g. Optical astronomy, infra-red astronomy radio astronomy, X-ray astronomy. Gamma-ray astronomy etc. with specific mention of Hubble space telescope). Kirchoff's law, Doppler effect and Hubble's law.	8
2.	Stellar Astrophysics	Classification and nomenclature of stars. Basic equations of stellar structure, main sequence, red giants and white dwarfs, HR diagram, stellar evolution, supernovae, extra solar planets.	8
3.	Death of a star	End states of stellar collapse: degeneracy pressure of a Fermi gas, structure of white dwarfs, Chandrasekhar mass limit, neutron stars pulsars and black holes.	6
4.	Our galaxy	The shape and size of Milky way and its interstellar mater	2
5.	Extragalactic astrophysics	Normal galaxies, active galaxies, cluster of galaxies, large-scale distribution of galaxies.	6
6.	GTR and Models of Universe	Qualitative idea of general theory of relativity (without using tensor calculus) and its implications. Different models of universe. Specific attention to the ideas	6

		related to big bang, cosmological constants, dark matter and dark energy.	
7.	Astrobiology	Drake equation and related questions.	2
8.	Conclusion	Review of the present status of Astrophysics and open questions.	2
		Total number of Lectures	40
Evaluation	n Criteria		
Componer	nts	Maximum Marks	
T1		20	
T2		20	
End Semes	ter Examination	35	
TA		25	
		(a) Quizes /class tests (05 M),	
		(b) Attendance (05 M)	
(c) Internal Assessment (05)		(c) Internal Assessment (05)	
(d) Assignments in PBL mode (10 M)			
Total		100	

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)						
1.	Astrophysics for Physicists, Arnab Rai Choudhuri, Cambridge University Press, Delhi, 2010.						
2.	Astrophysics: Stars and Galaxies, K D Abhyankar, University Press, Hyderabad, 2009.						
3.	Facts and Speculations in Cosmology, J V Narlikar and G Burbidge, Cambridge University Press, Delhi, 2009.						
4.	The Cosmic Century, Malcolm Longair, Cambridge University Press, Cambridge, 2006.						
5.	An Introduction to Astrophysics, Baidyanath Basu, Prentice Hall of India, Delhi 1997.						
6.	Fundamentals of Equations of State, S. Eliezer, A Ghatak and Heinrich Hora, World Scientific, Singapore, 2002. Only Chapter 15.						

Project based learning: Project report (5-7 pages in pdf format indicating Name, Enroll No. and Batch) is to be uploaded in google class room before starting of End Term Exam. Max 5 students can work on one topic given in the list (Dark Matter, Dark Energy, Expanding Space time, Merger of Black holes, Failed stars, Detection of Gravitational Waves, Light cone in GTR, Particle production radiation era, Did big bang happened?, Discover life: ET etc.), however, they may prepare different reports. Report should include introduction, definition, mathematics, principle, working, figures, applications etc.

Course Code	18B12PH814				mester: VIII Session: 2022 -2023 onth: January to June		
Course Name	Plasma Physics						
Credits 3		Contact Hours		Hours		3	

Faculty (Names)	Coordinator(s)	Dr. Anuraj Panwar
	Teacher(s)	Dr. Anuraj Panwar

COURSE O	UTCOMES	COGNITIVE LEVELS			
C402-34.1	C402-34.1 Define terminology and concepts of plasma physics with various natural phenomena and engineering applications.				
C402-34.2	Summarize plasma and explain its electric, magnetic, dielectric and thermal properties.	Understand Level (C2)			
C402-34.3	Develop magneto-hydrodynamic fluid and kinetic models to explain various phenomena taking place in homogeneous, isotropic and anisotropic plasma conditions.	Apply Level (C3)			
C402-34.4	Analyze and formulate mathematical / analytical expressions for various nonlinear processes in plasmas.	Analyze Level (C4)			
C402-34.5	Evaluate physical problems, estimate their numerical solutions and draw inferences from the results.	Evaluate Level (C5)			

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module	
1.	Introduction to the Plasma State	Elementary concepts, definition of temperature Debye Shielding, plasma parameters, applications of Plasma Physics, Production of Plasmas in the laboratory, Drifts of charged particles under the effect of different combinations of electric and magnetic fields and Mirror Machine.	10	
2.	Fluid description of plasmas	Relations of Plasma Physics to ordinary electromagnetics, dielectric constant of a plasma, collisions, equation of continuity, macroscopic parameters of plasma, two and one fluid equations for plasma.	04	
3.	Nonlinear Waves in Plasma oscillations, space charge waves of warm plasma, ionacoustic waves and electromagnetic waves in magnetized plasma.			
4.	Decay of Plasma by diffusion, diffusion across a magnetic field, single fluid MHD equations, Diffusion in fully ionized Plasmas, Bohm diffusion and Neoclassical diffusion.			
5.	Stability of fluid plasma	The equilibrium of plasma, classification of plasma instabilities, stability analysis: Two stream instability and Gravitational instability or Rayleigh Taylor instability (Plasma supported against gravity by magnetic field).	04	
6.	Ponderomotive force, Parametric instabilities, decay instability,		06	
7.	Controlled thermo- nuclear fusion	Magnetic and inertial confinement schemes, ITER, TOKAMAK.	02	
	40			

Evaluation Criteria							
Components	Maximum Marks						
T1	20						
T2	20						
End Semester Examination	35						
TA	25 (Quiz+PBL+Attendance+class performance)						
Total	100						

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Textbooks, Reference Books, Journals, Reports, Websites etc. in the IEEE format)							
1.	F. F. Chen., Introduction to Plasma Physics, Springer (2016).							
2.	Krall and Trievelpiece, <i>Principles of Plasma Physics</i> , McGraw-Hill (1973).							
3.	W. L. Kruer, <i>The Physics of laser plasma interactions</i> , Addison Wesley (1988).							
4.	Liu and Tripathi, <i>Interaction of electromagnetic waves with electron beams and plasmas</i> , World Scientific (1994).							

Project based Learning (PBL): Students groups may be formed to submit project reports on natural and engineering applications of plasma physics. Students may be asked to make presentations on topics like mirror machine, plasma diffusion, Raman scattering and plasma fusion devices. Students may be asked to present recent published articles on plasma applications. Students may be asked to solve plasma physics problems by using their expertise computer language

Multi Attribute Decision Making (20B12MA411)

Course Code		20B12M	A411	Semester Even	Semester VIII Sess			
Course Na	me	Multi At	Month from Jan 2023 to June 2023 Iulti Attribute Decision Making					
				8				
Credits		3			ontact Hours 3-0-0)		
Faculty (N	ames)	Coordin	, ,	Dr. Dinesh C. S. I	Bisht			
		Teacher(s (Alphabe	*	Dr. Dinesh C. S. I	Bisht			
COURSE	OUTCO	OMES				COGNITIVE LEVELS		
After pursu	ing the	above ment	ioned cours	se, the students will	be able to:			
CO-1	_	nin basic steronments.	ps in decisi	on analysis and dec	ision-making	Understanding Level (C2)		
CO-2	apply	group dec	ision makin	g methods to reach	a collective decision.	Applying Level (C3)		
CO-3	devel	-	cept of mult	i criteria decision n	naking process and	Understanding Level (C2)		
CO-4	apply probl	elementar lems.	Applying Level (C3)					
CO-5	11	ze value ba ion making		tranking methods to	solve multi attribute	Analyzing Level (C4)		
Module No.	Title Mod	of the ule	Topics in	the Module		No. of Lectures for the module		
1.	Decis Anal		Environm Uncertain	ents, Decision	ysis, Decision-Making Making Under ng Under Risk, Utility	8		
2.	Grou Decis Maki	sion	GDM Mo Disadvant Voting Sy	7				
3. Multicriteria Decision Decision Making Decision Making, Decision Making Process, Making Structuring Process, Decision Matrix, Attributes, Normalization, Attribute Weight Assignment Methods.					8			
4.		entary ods for			l, Even-Swap method, max method, Maximin	8		

	MADM	method, Conjunctive method, Disjunctive method, Median Ranking, Analytic Hierarchy Process, Analytic Network Process.				
5	Value Based and Outranking Methods	Multi Attribute Value Theory, Simple Additive Weighting, Weighted Product, TOPSIS Outranking Methods.	11			
Total numb	Total number of Lectures					

Evaluation Criteria

ComponentsMaximum MarksT120T220End Semester Examination35TA25 (Quiz and Assignments)Total100

Project based learning: Students are divided in a group of 4-5 to do a survey on the applications of classical and recent multi attribute decision making techniques in their respective branches. The student recognizes the multi attribute decision making problems arising in real life and solves these problems with the help of MADM techniques learnt in this course.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- Ishizaka, Alessio, and Philippe Nemery. *Multi-criteria decision analysis: methods and software*.

 1. John Wiley & Sons, 2013.
- Xu, Zeshui. *Uncertain multi-attribute decision making: Methods and applications*. Springer, 2015.
- Tzeng, Gwo-Hshiung, and Jih-Jeng Huang. "Multi Attribute Decision Making: Methods and Applications." *USA*, *CRC Press*. 2016.

Optimization Techniques (16B1NMA831)

Course Description

Course Code		16B1NMA	831	Semester Even	Semester Even Semester VIII Session Month from Jan 2023		
Course Na	me	Optimization	on Techi	niques	Wildien Hom San 2025	5 to 5 till 2023	
Credits		3			Contact Hours 3-0-0		
Faculty		Coordinat	or(s)	Dr. Ram Surat Ch			
(Names)		Teacher(s)		D D G G			
		(Alphabeti	cally)	Dr. Ram Surat Ch	auhan		
COURSE	COURSE OUTCOMES						
After pursu	ing the	e above ment	ioned co	ourse, the students wil	ll be able to:		
C402-2.1	C402-2.1 apply generalized, revised and dual simplex method for linear programming problems (LPP).					Applying Level (C3)	
C402-2.2		•	_	and linear program cms in game theory.	ming techniques for pure	Applying Level (C3)	
C402-2.3				olems on queuing and	inventory models.	Analyzing Level (C4)	
C402-2.4	solve	and analyze	the nety	work scheduling and s	sequencing problems.	Analyzing Level (C4)	
C402-2.5		te use of dynamic programming technique to solve complex linear gramming problems.				Applying Level (C3)	
C402-2.6					Evaluating Level (C5)		
Module	Title	of the	Topics	s in the Module		No. of Lectures	
No.	Mod	ule	•		for the module		
1.	Revie	ew of	Conve	08			
	Linea		(LPP)	, graphical method,	aphical method, simplex method and its		
	Progr	ramming	varian	ts, revised simplex			
			theory	, dual simplex meth			
			analys	sis.			
2.	Gam	e Theory	Recta	ngular Games, Mini	max Theorem,	06	
			Graph	ical Solution of 2×r			
			m×n (Games, Solution of	games using LPP		
			techni	que.			
3.	Queu	ing Theory	Introd	uction, Steady-State S	08		
		ventory	Queui	ng Models: M/M/1, N	M/M/1 with limited		
	Mode	el:	waiting space, M/M/C, M/M/C with limited				
			waitin	g space. Inventory	Models: Deterministic		
			and P	robabilistic models.			
4.	_	encing &	Proce	ssing of Jobs throug	h Machines:	07	
	Sche	duling		= =	igh two machines, two		
			jobs tl	nrough m machines	and n jobs through m		
			machi	nes. Project Schedu	ling: Network diagram,		
					M), Project Evaluation		
			and R	eview Technique (P	PERT).		

5	5. Dynamic	Discrete and Continuous Dynamic	06				
	Programming	Programming: Bellman's principle of optimality,					
		linear and nonlinear dynamic programming					
6	6. Nonlinear	07					
	Programming	minimization problem: Newton's method,					
		Golden section method, Fibonacci search					
		method, Bisection method. Multidimensional					
		minimization problem: Steepest descent method,					
		Multidimensional Newton's method.					
		Total number of Lectures	42				
Eval	luation Criteria						
Com	ponents	Maximum Marks					
T1		20					
T2		20					
End	Semester Examination	35					
TA		25 (Quiz, Assignments)					
Tota	ો	100					
	· ·	terial: Author(s), Title, Edition, Publisher, Year of Public rnals, Reports, Websites etc. in the IEEE format)	cation etc. (Text				
1.	Taha, H. A., Operations Research - An Introduction, Tenth Edition, Pearson Education, 2017.						
2.	Rao, S. S Engineering Optimization, Theory and Practice, Third Edition, New Age International						
	Publishers, 2010.						
3.	Hillier F., Lieberman G. J., Nag,B. and Basu, P., Introduction to Operations Research, 10th						
	edition, McGraw-Hill, 2						
4.	Wagner, H. M., Princip	les of Operations Research with Applications to Manager	rial Decisions, 2 nd				
	edition, Prentice Hall or	f India Pvt. Ltd., 1980.					

Course Code	22B12CS413	Semester: EV	EN	Semeste	er 8 th Session2022-2023
				Month:	Jan 2023 to Jun 2023
Course Name	Data Analytics using R and Python				
Credits	3		Contact H	Iours	3-0-0
NBA Code	C433-9				

Faculty (Names)	Coordinator(s)	Dr. MeghaRathi (J62) & Dr. Raju Pal(J128)
	Teacher(s) (Alphabetically)	Dr. MeghaRathi (J62) & Dr. Raju Pal(J128)

COURSE	OUTCOMES	COGNITIVE LEVELS
C433-9.1	Explain the fundamental concepts of data analytics.	Understand (Level 2)
C433-9.2	Demonstrate the concepts of R & Python for data analytics.	Apply (Level 3)
C433-9.3	Apply advanced methods and their quantitative analysis for real-world problems.	Apply (Level 3)
C433-9.4	Apply statistical methods for hypothesis testing and inference problems.	Apply (Level 3)
C433-9.5	Analyze, visualize and interpret the results for useful insights.	Analyze (Level 4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Data Definitions and Analytical Programming Techniques	Introduction to Data Analytics, Elements, Variables, and Data categorization, Levels of Measurement, Introduction to analytical programming languages R & Python, and Installing Software's & Setting up, Lists & Dictionaries, Functions & Packages, Data frame, Import and Export data , Data Preprocessing.	7
2.	Parametric &Non Parametric Tests	Hypothesis Testing, Assumption Testing, T-Test, Power Analysis, ANOVA, Fitting ANOVA Model in Python & R, Wilcoxon Tests, Mann-Whitney U Test, Fisher Exact Test	6
3.	Correlation &Association Analysis	Pearson Correlation, Spearman Correlation, Kendall Tau Correlation, Affinity Analysis & Market Basket Analysis, APriori Algorithm, Association Rules, Frequent Pattern AnalysisCase Study-I.	7
4.	Data Analysis Techniques	Analysis of Streaming Data, Applications of ML Library in R & Python for Supervised & Unsupervised Learning, Basic Neural Network, Transfer Function Models,	10

6.	Model Evaluation	Bayesian Theory & Fuzzy Logic, Plotting with R & Python Libraries, Statistical Inference, Volatility Analysis, Case Study-III. Model Evaluation Measures for Classification Task, Decision Cost/ Benefit Analysis, Rationale for measuring	4
	Techniques	Decision Cost/ Benefit Analysis, Rationale for measuring Cluster Goodness, Silhoutte Method, Pseudo F-Statistic Total number of Lectures	42

Project based learning:

1.

2.

Schutt, O'Reilly (2014).

SciPy and Matplotlib, Apress, 2019

Each student in a group of 3-4 has to work on a mini-project, in which they will identify a real-life problem and develop the solution by utilizing skills learned throughout the course. The project implementation should be in python or R preferably along with well documentation on different aspects of the software. This enhances the understanding of students towards different concepts of data analytics and also helps them during their employability as data engineer or data analyst.

Evaluation Criteria	
Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
TA	25 (Attendance,Quiz/Mini-Project/Assignment)
Total	100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) Text Book(s) 1. Haider, M. (2015). Getting Started with Data Science: Making Sense of Data with Analytics. IBM Press. Manoj Kumar Srivastava and Namita Srivastava, Statistical Inference - Testing of 2. Hypotheses, Prentice Hall of India, 2014. Douglas C. Montgomery, Cheryl L. Jennings, Murat Kulahci, Introduction to Time Series Analysis and **3.** Forecasting, Second Ed., Wiley, 2016. 4. David J. Pine, Introduction to Python for Science and Engineering, CRC Press, 2019. Jake vanderPlas, Python Data Science Handbook - Essential Tools for Working with Data, O'Really 5. Media, 2017 Glenn J. Myatt, Making sense of Data: A practical Guide to Exploratory Data Analysis and Data Mining, **6.** John Wiley Publishers, 2007 7. Kabacoff, Robert I. R in action: data analysis and graphics with R. Simon and Schuster, 2015. 8. Fandango, A. (2017). Python Data Analysis. Packt Publishing Ltd. **Reference Books**

Robert Johansson, Numerical Python – Scientific Computing and Data Science Applications with NumPy,

Doing Data Science, Straight Talk From The Frontline, Cathy O'Neil and Rachel

3.	Robert Sedgewick, Kevin Wayne, Robert Dondero, Introduction to Programming in Python: An Inter- disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016		
4.	Nelli, F., Python Data Analytics: with Pandas, NumPy and Matplotlib, Apress, 2018.		
5.	Wickham, H., &Grolemund, G. (2016). R for data science: import, tidy, transform, visualize, and model data. "O'Reilly Media, Inc.".		

Course Description

Entire Department

(Alphabetically)

Course Code	15B29CI891	Semester ODD (specify Odd/Even)		Semester VIII Session 2022 -2023 Month from Jan to June 2023		
Course Name	Project Part – 2 (IT)					
Credits	8		Contact Hours			
Faculty (Names)	Coordinator(s) Prashant Kaushik					
	Teacher(s)	Entire Department				

COURSE	COUTCOMES	COGNITIVE LEVELS
C451.1	Summarize the contemporary literatureand explore tools for hands- on in the respective project area	Understand Level (Level 2)
C451.2	List out the specific requirements to develop the workable solution for the identified computing problem	Analyze Level (Level 4)
C451.3	Develop a working model for the identified problem	Apply Level (Level 3)
C451.4	Inspect the developed solution using exhaustive test cases and evaluate its performance using statistical methods and relevant metrics	Evaluate Level (Level 5)
C451.5	Report the results and findings of the project in written and verbal formats	Create Level (Level 6)

Module No.	Title of the Module	List of Experiments	СО
1.			
2.			
•••			
n.			

Evaluation Criteria

Components	Maximum Marks
Mid Semester Viva	20
Final Viva	30
Project Report	20
Day to Day Work	30
Total	100

Project based learning: Each student in a group of 2-3 will have to develop a Major Project based on different real-world problems using any open-source programming language. Students have to study the state-of-the-art methods before finalizing the objectives. Project development will enhance the knowledge and employability of the students in IT sector.

Course Code	22B12CS414			Semester: VIII th Session 2022 -2023 Month from February to June		
Course Name	Agile Software Development Process					
Credits	3		Contact H	ours		3-0-0

Faculty (Names)	Coordinator(s)	Dr Amarjeet Prajapati
	Teacher(s) (Alphabetically)	Dr Amarjeet Prajapati

COURSE	OUTCOMES	COGNITIVE LEVELS
C433- 10.1	Interpret the trade-offs between traditional software development methods and agile software development methods for a software project effectively.	Understand level (Level 2)
C433- 10.2	Identify and make use of an appropriate agile software engineering approach viz. extreme programming, Scrum, Crystal techniques as a part of software development.	Apply Level (Level3)
C433- 10.3	Apply Refactoring techniques on source code for improved design	Apply Level (Level3)
C433- 10.4	Choose tools and construct the methods for testing Agile projects using various testing strategies	Apply level (Level3)
C433- 10.5	List the Planning, tracking, estimation and monitoring of agile projects with techniques like burn down charts, velocity calculation and task boards etc.	Analyze level (level4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module			
1.	Introduction	Traditional software development methods, Agile software development methods and lean software development methods	3			
2.	Agile Fundamentals	Agile manifesto, Agile principles, Characteristics of Agile processes, an iterative development process, Pros and cons of incremental development and software prototyping.				
3.	Requirements and Planning	User stories, agile estimation, planning techniques- Prioritizing Themes, Financial prioritization, prioritizing desirability	4			
4.	Scrum Introduction, Scrum - Prioritizing, Estimating, and Planning, The Scrum Experience (hands-on exercise)					
5.	Extreme Programming Values, Principles and Practices, Programming (XP) Extreme Programming, Embracing change, incremental change		5			
6.	Crystal	Crystal methodologies: project categories, complexity, family members, Crystal's seven properties, Crystal clear development process cycle, Crystal yellow, crystal orange and crystal orange web.	4			
7.	Kanban	The minimum of leading Languages and the leading				

	Measure and manage flow, Emergent behavior				
8.	Feature-Driven Development	Processes of feature driven development, practices and progress in FDD	2		
		Agile testing strategy, automated unit test, test plan, test driven development, alpha, beta and acceptance testing	5		
10.	Refactoring	Bad smells in code, properties of refactoring, refactoring examples, benefits, cost and risk of refactoring	7		
	Total number of Lectures 42				
Evaluation	Criteria				
Componen	ts	Maximum Marks			
T1 ¹		20			
T1		20			
End Semester Examination		35			
TA		25 Attendance (10) + Assignment/Quiz/Mini-project (15)			
Total		100			

Project based learning: Each student in a group of 3-4 have to work on a mini-project, in which they will identify a real-life problem and develop the solution by applying their knowledge of search-based software engineering approach. The project implementation can be in any programming language preferably along with well documentation on different aspects of the software. It enhances the understanding of students towards different concepts of search-based software engineering approach and also helps them during their employability.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Cohn, Mike. Agile estimating and planning. Pearson Education			
2.	Beck, Kent. Extreme programming explained: embrace change. Addison-wesley professional			
3.	Martin, Robert C. Agile software development: principles, patterns, and practices. Prentice Hall.			
4.	Shore, James. The Art of Agile Development: Pragmatic guide to agile software development. " O'Reilly Media, Inc.".			
5.	Schwaber, Ken. Agile project management with Scrum. Microsoft press			
6.	Stellman, Andrew, and Jennifer Greene. Learning agile: Understanding scrum, XP, lean, and kanban. "O'Reilly Media, Inc."			
7.	Cohn, Mike. User stories applied: For agile software development. Addison-Wesley Professional			

Course Code	22B12CS415	Semester Even (specify Odd/Even)			er 8th Session 2022 from January 2023 to May 2023
Course Name Artificial Intelligence in Healthcare a		nd Smart S	ystems		
Credits 3			Contact I	Hours	3-0-0

Faculty (Names)	Coordinator(s)	Dr. Ankit Vidyarthi
	Teacher(s) (Alphabetically)	Dr. Ankit Vidyarthi

COURSE	OUTCOMES	COGNITIVE LEVELS
C433-7.1	Understand the fundamental concepts of AI in healthcare Industry	Understand Level (Level 2)
C433-7.2	Understand the procedure to apply AI to EHR Data	Understand Level (Level 2)
C433-7.3	Applying AI to 2D Medical Imaging Data	Apply Level (Level 3)
C433-7.4	Analyze the concept by applying AI to 3D Medical Imaging Data	Analyzing Level (Level 4)
C433-7.5	Evaluate the concept of AI to Wearable Device Data	Evaluate Level (Level 5)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	AI introduction, Connection of AI with Healthcare, Use and Applications of the AI for healthcare problems, AI pipeline	4
2.	Model Architectures	Basics of Model architectures, Open Source API's for Model designing, Classification Models – KNN, Neural Network (Perceptron, Feed Forward, and Backpropagation), Segmentation – Kmeans, FCM, and Hierarchical models, Regression and Prediction Models	6
3.	EHR Data Analysis	Analyze EHR datasets to check for common issues (data leakage, statistical properties, missing values, high cardinality) by performing exploratory data analysis, Group and categorize data within EHR datasets using code sets, Create derived features (bucketing, cross-features, embeddings) utilizing Tensorflow feature columns on both continuous and categorical input features, Evaluating, and Interpreting Models.	8
4.	2D Image Analysis	AI for 2D medical imaging is and its relevancy, 2D medical imaging modalities and their clinical applications, machine learning algorithms for 2D medical imaging, Statistically assess an algorithm's performance, Translating AI Algorithms for Clinical Settings, 2D Medical Imaging Exploratory Data Analysis	10

5.	3D Image Analysis	3D Medical Imaging – Clinical Fundamentals, Exploratory Data Analysis, 3D Medical Imaging – Deep Learning Methods, Deploying Al Algorithms in the Real World	8
6.	Wearable Devices	Intro to Digital Sampling & Signal Processing, Introduction to Sensors, Activity Classification, ECG Signal Processing,	6
		Total number of Lectures	42

Evaluation Criteria

L'aladion Clitcha	
Components	Maximum Marks
T1 Examination	20
T2 Examination	20
End Semester Examination	35
TA	25 (Attendance (10), Tutorial/Quiz/Class-Test/ (5), Mini Project (10))
Total	100

Project Based Learning: Students in a group of 3-4 will take some real world problem and apply AI logics to solve the healthcare problem in a meaning way. Students can able to understand the core logic about data handling and processing.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
 Andrew Nguyen, Hands-On Healthcare Data, Publisher(s): O'Reilly Media, Inc., Released August 2022
 Kerrie L. Holley, Siupo Becker, AI-First Healthcare, Publisher(s): O'Reilly Media, Inc., Released April 2021
 Jason Burke, Health Analytics: Gaining the Insights to Transform Health Care, John Wiley & Sons, 2013
 Adam Bohr, Kaveh Memarzadeh, Artificial Intelligence in Healthcare, Elsevier Science, 2020

Detailed Syllabus

Lecture-wise Breakup

Course Code	22B12CS418	Semester EVEN (specify Odd/Even)			er VIII Session 2022 -2023 from Jan -June
Course Name	Unmanned Aerial Ve	manned Aerial Vehicles: Design Principles and Applications		cions	
Credits 3 Con		Contact H	lours	3-0-0	

Faculty (Names)	Coordinator(s)	Dr. Hema N
	Teacher(s) (Alphabetically)	Dr. Hema N

COURSE	DUTCOMES	COGNITIVE LEVELS
C432.1	Explain types and characteristics of UAVs and their applications.	Understand (L2)
C432.2	Assess design requirements and tools to develop different UAVs.	Apply (L3)
C432.3	Identify and analyze the components, sensors and payload of UAVs, their navigation and guidance.	Analyze (L4)
C432.4	Analyze UAV Architectures and communication choices for selected case studies.	Analyze (L4)
C432.5	Simulation of UAVs using open source autopilot systems and design/development of small drone based applications.	Apply (L3)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Introductions to UAVs; past , current and future of UAVs; Regulations bodies; UAV Classifications'- Military ,Civilian and customized Unmanned Aircraft; Review of a Few Successful UAVs	02
2.	Design Fundamentals	Introduction , Design Project Planning, Decision Making, Design Process, Systems Engineering, UAV Conceptual Design, UAV Preliminary Design, UAV Detail Design, Design Review, Evaluation.	04

3.	UAV Preliminary Design	Introduction, Maximum Takeoff Weight Estimation, Weight Buildup, Payload Weight, Autopilot Weight, Fuel Weight, Battery Weight, Empty Weight, Wing and Engine Sizing, Quadcopter Configuration.	04
4.	Design Disciplines	Introduction , Aerodynamic Design , Structural Design , Propulsion System Design, Landing Gear Design, Mechanical and Power Transmission Systems Design , Electric Systems, Control Surfaces Design, Safety Analysis , Installation Guidelines.	04
5.	Aerodynamic Design	Introduction, Fundamentals of Aerodynamics, Wing Design, Tail Design, Vertical Tail Design, Fuselage Design, Antenna, Aerodynamic Design of Quad-copters, Aerodynamic Design Guidelines	03
6.	Control System Design	Introduction ,Basics of Autopilot Design, Fundamentals of Control Systems, Servo/Actuator , Flight Control Requirements, Control Modes, Controller Design, Autonomy, Manned–Unmanned Aircraft Teaming, Control System Design Process.	04
7.	Guidance and Navigation System Design	Introduction, Fundamentals of Guidance System Design, Law of Guidance: Command, PN, Pursuit and Waypoint, Sense and Avoid, Formation Flight, Motion Planning and Trajectory Design, Guidance Sensor, Guidance System Design. Navigation System Design and Classifications, Coordinate Systems, Inertial Navigation System, Kalman Filtering, Global Positioning System, Position Fixing Navigation, Navigation in Reduced Visibility Conditions, Inertial Navigation Sensors, Navigation Disturbances, Navigation System Design.	05
8.	UAV Architectures	Introduction, Distributed Hybrid, Deliberative/Reactive Architecture, Classification of Multi-UAV Architectures, Operator Interaction with Centralized Versus Decentralized UAV Architectures through case studies	03
9.	UAV Microcontroller	Introduction, Basic Fundamentals, Microcontroller Circuitry, Embedded Systems, Microcontroller Programming, Programming in C and Arduino, Open-Source Commercial Autopilots, Design Procedure, Design Project	03

11.	Ground Control Station and Payloads Design UAV Communication	Introduction, GCS Subsystems, Types of Ground Stations, GCS of a Number of UAVs, GCS Design Guidelines. Elements of Payload, Payloads of a Few UAVs, Cargo or Freight Payload, Reconnaissance/Surveillance Payload, Scientific Payloads, Military Payloads, Electronic Counter Measure Payloads, Payload Installation, Payload Control and Management, Payload Selection/Design Guidelines. Fundamentals, Data Link, Transmitter, Receiver, Antenna, Radio Frequency, Encryption, Communications Systems of a	03
12.	s System Design UAV applications	Few UAVs, Installation, Communications System Design, Bi-directional Communications using Arduino Boards. Reconnaissance and intelligence gathering, forest patrol, coastline monitoring, search and rescue, Health care system, border patrol, fire monitoring, target search and destroy, pipeline monitoring, communication relay, data mule	02
		Total number of Lectures	42

Project Based Learning: Each student in a group of 3-4 will choose a real-life application area to build UAV using ArduPilot open source autopilot system. ArduPilot is a trusted, versatile, and open source autopilot system supporting many vehicle types: multi-copters, traditional helicopters, fixed wing aircraft, boats, submarines, rovers and more. ArduPilot enables the creation and use of trusted, autonomous, unmanned vehicle systems for the peaceful benefit of all. ArduPilot provides a comprehensive suite of tools suitable for almost any vehicle and application.

Evaluation Criteria	
Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
TA	25 (Attendance =10, Class Test or/and Quizzes, etc = 05,
	Assignments in PBL mode = 10).
Total	100

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

Text Books:

- Sadraey, M. (2017). Unmanned aircraft design: A review of fundamentals. *Synthesis Lectures on Mechanical Engineering*, 1(2), i-193.
- 2. Jha, A. R. Theory, design, and applications of unmanned aerial vehicles. CRC Press, 2016.

Refe	rence:
1.	Valavanis, K. P., & Vachtsevanos, G. J. (Eds.). (2015). Handbook of unmanned aerial vehicles (Vol. 1). Dordrecht: Springer Netherlands.
2.	Lin, Ching-Fang. MODERN NAVIGATION, GUIDANCE, AND CONTROL PROCESSING. 1991.
3.	Austin, Reg. <i>Unmanned aircraft systems: UAVS design, development and deployment.</i> John Wiley & Sons, 2011.
4.	Unmanned Aircraft Systems : UAVs Design Development and Deployment by Reg Austin
5.	Keane, Andrew J., András Sóbester, and James P. Scanlan. Small unmanned fixed-wing aircraft design: a practical approach. John Wiley & Sons, 2017.
6.	https://onlinecourses.nptel.ac.in/noc21_ae13/preview
7.	https://www.coursera.org/learn/robotics-flight#syllabus

Course Code	22B12CS420				er:VIII th Session 2022 -2023 : January to May 2023
Course Name	Software Construction using Microservices & Kubernetes				
Credits 4 Contact Ho		Hours	4		

Faculty (Names)	Coordinator(s)	Dr. Anubhuti, Dr. Sulabh Tyagi
	Teacher(s) (Alphabetically)	Dr. Anubhuti, Dr. Sulabh Tyagi

COURSE	OUTCOMES	COGNITIVE LEVELS
C434-6.1	To design the complete delivery pipeline using DevOps practices.	Understand level (Level 2)
C434-6.2	Understanding monolithic and microservices architecture, and different microservice technologies	Understand Level (Level2)
C434-6.3	To design different microservices using REST architecture, domain drivers and design patterns	Apply Level (Level3)
C434-6.4	Creating security and test strategies for microservices using access tokens and test principles	Create level (Level 6)
C434-6.5	Understanding Kubernetes containerization concepts through kubectl commands and pod concepts	Understand level (level2)
C434-6.6	Creating an application deployment infrastructure by using kubernetes controllers and load balancers	Create level 6 (Level3)

Module No.	Title of the Module	Topics in the Module No. of Lectures for the module	
1.	Introduction to DevOps	Why DevOps, DevOps Stages, Continuos Integration (CI), Continuos Delivery (CD) and Continuons Deployment (CDep), Continuos monitoring, DevOps Tool support.	6
2.	Jenkins and CI/CD pipeline	Introduction to Jenkins (With Architecture), Jenkins Management, Adding a slave node to Jenkins, Building Delivery Pipeline	6
3.	Why microservices	Monolithic architecture, microservices architecture, service- oriented architecture (SOA), REST architecture, Inter process Communication, microservice transaction management	6
4.	Microservices Design	Microservices design patterns, domain driver design, designing small microservices, designing independent microservices,	6
5.	Microservices security and testing	Importance of security in microservices, microservices security principles and techniques, access tokens, testing strategy for microservices, testing at different levels for microservices	6

6.	Kubernetes fundamentals	Kubernetes core concepts, kubectl commands, Pods concepts, configuring cluster nodes	6
7.	Kubernetes implementation	Kubernetes services and controllers, load balancing and deployment, configuring kubernetes scheduler, deploying an application using dashboard	6
	42		

Evaluation Criteria

T1:20

T2:20

T3:35

TA: 25 (Attendance, quizzes, assignments, demonstration)

Total 100

Project based learning: Each student in a group of 4-5 will select an application and will create the entire DevOps process. They will learn to work with tools and technologies such as Docker, Git, Kubernetes, Microservices and Jenkins. DevOps is currently all the rage and the demand for DevOps engineers are high. With a lot of companies focusing on reducing the operational time and costs, DevOps has become an important factor. Working on the project enhances the student's knowledge on of new world data applications and helps in enhancing their employability into related sector.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

Davis, Jennifer.Effective DevOps: Building a Culture of Collaboration, Affinity, and Tooling at Scale. OriellyPublication. 1st edition. 2016

Gene, Kim. The Phoenix Project: A Novel About IT, DevOps, and Helping Your Business Win. IT Revolution USA. 3rd edition. 2016

Newman, Sam. Building Microservices: Designing Fine-Grained Systems. OOrielly Publication. 1st edition. 2016

Baier Jonathan. The complete kubernetes guide. Packt publishing house, Ist edition. 2019

Subject Code	22B12CS422 Semester: Even		Semester VIII Session 2022 -2023
			Month from: Feb 2023 to June 2023
Subject Name	e Cloud computing essentials: Azure and AWS		
Credits 3 Contact		Contact Hours	3-0-0

Faculty	Coordinator(s)	Deepti Singh (J62), Akanksha Mehndiratta (J128)
(Names)	Teacher(s) (Alphabetically)	Deepti Singh, Akanksha Mehndiratta

COURSE	OUTCOMES	COGNITIVE LEVELS
C434-7.1	Examine the fundamentals of Cloud Computing, its applicability and architecture.	Understand (level 2)
C434-7.2	Examine the architecture and services of AWS (Amazon Web Services) cloud platform.	Analyze (level 4)
C434-7.3	Examine the architecture and services of Azure cloud platform.	Analyze (level 4)
C434-7.4	Examine the architecture and services of Google Cloud platform.	Analyze (level 4)
C434-7.5	Develop the applications using appropriate cloud platforms.	Apply (level 3)

Modul e No.	Subtitle of the Module	Topics in the Module	No. of Lectures for the module
1.	Overview of Cloud Computing	Origin of Cloud Computing, Benefits and challenges, Parallel and distributed computing, Grids and HPCs, Data center design and management for clouds, Virtualization: Why virtualization, Benefits and shortcomings, comparison with cloud, Software Defined Networks and Storage (SDN and SDS) Cloud Computing Architecture: IaaS, PaaS, SaaS, Types of cloud, Interoperability and its challenges, Cloud security, stability and fault tolerance methods and challenges, Applications for cloud, Clouds for different applications, Service Level Agreements, Concurrent, high-throughput and data intensive computing	10
2.	AWS Essentials	Introduction to Amazon Web Services, EC2: Compute services, Networking, infrastructure and reliability, Storage and database services, Amazon Elastic Block Store (Amazon EBS), Amazon Simple Storage Service (Amazon S3), Amazon Elastic File System (Amazon EFS), Amazon Relational Database Service (Amazon RDS), Amazon virtual private cloud (VPC), Identity and Access Management (IAM) and Security on AWS.	8
3.	Azure Essentials	Azure core concepts, Azure services, Describe core solutions and management tools on Azure, Describe general security and network security features, Describe identity, governance, privacy, and compliance features, Describe Azure cost management and service level agreements.	8
4.	GCP Essentials	Google Cloud Fundamentals: Core Infrastructure-Google App Engine, Google Compute Engine, Google Kubernetes Engine, Google Cloud Storage, Google Cloud SQL, and BigQuery. Google Cloud Resource Manager hierarchy and Google Cloud Identity and Access Management, Essential Google Cloud Infrastructure: Foundation, Essential Google Cloud Infrastructure: Core Services, Elastic Google Cloud Infrastructure: Scaling and Automation, Reliable Google Cloud Infrastructure: Design and Process	8
5.	Recent trends, Cloud Platforms Comparison & Project based learning	Serverless computing, Microservices, Usage of containers and Dockers, Kubernetes, Comparing the services and efficiency of AWS, Azure and GCP with respect to resource management. Discussing and Implementing a few web applications and system applications on the cloud platforms under different resource management scenarios. Analyzing and evaluating the platforms based on various parameters like security, load balancing, fault tolerance, resilience, costeffectiveness, etc.	8
		Total number of Lectures	42
Evaluation Criteria Components T1 T2		Maximum Marks 20 20	
End Semester Examination TA Total		35 25 (Attendance (10), Mini-Project (10), Assignments (5)) 100	

Project based learning: Groups of 2-3 students will choose a project topic. They will use the concepts of cloud technology to execute their project. In a team, they will learn how to apply the concepts for problem solving in a meaningful way. The knowledge gained will enhance their employability in the IT sector.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
	Text Books			
1.	Buyya, Rajkumar et al. "Cloud Computing Principles and Paradigms." Wiley, 2011.			
2.	Reagan, Rob. "Web Applications on Azure." Apress, 2017			
3.	Moyer, Christopher M "Building Applications in the Cloud: Concepts, Patterns, and Projects." Pearson Education, 2011.			
4.	Wilkins, Mark. "Learning Amazon web services (AWS): a hands-on guide to the fundamentals of AWS cloud". Addison-Wesley Professional, 2019			
	Reference Books			
1	Sosinsky, Barrie A "Cloud Computing Bible." (2010).			
2.	Pace, Eugenio et al. "Developing Applications for the Cloud on the Microsoft Windows Azure Platform." (2010).			
3	Reese, George. "Cloud Application Architectures - Building Applications and Infrastructure in the Cloud." (2009).			
4	Diaz, Francesco and Roberto Freato. "Cloud Data Design, Orchestration, and Management Using Microsoft Azure." <i>Apress</i> (2018).			