JAYPEE INSTITUTE OF INFORMATION AND TECHNOLOGY

INTEGRATED M. TECH BIOTECHNOLOGY

9th Semester (Summer Semester)

PLANT DISEASE AND BIOTECHNOLOGY Detailed Syllabus Lecture-wise Breakup

	-		
Course Code	15B1NBT833	Semester : Summer	Semester Summer (IX) AY 2022- 23
Course Name	Plants Diseases & Biotechnology		
Credits	3	Contact Hours	3

Faculty	Coordinator(s)	Dr Sonam Chawla
(Names)	Teacher(s) (Alphabetically)	Dr Sonam Chawla
	Description	Cognitive level
S.No.		(Blooms taxonomy)
CO833.1	Summarize different types of	Understanding Level
	plant diseases, classification of	Level II
	pathogens and host responses.	
CO833.2	Compare different disease	Understanding Level
	control mechanisms, identify	Level II
	Risks involved, prepare disease	
	fact sheets	
CO833.3	Apply modern tools for disease	Applying Level
	management and achieve	Level III
	sustainable agricultural	
	productivity	
CO833.4	Examine advances in the field of	Analysing Level
	plant biotechnology to develop	Level IV
	disease resistant plants	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Agriculture productivity & Global food prospects, Impact of disease on crop productivity, existing methods (chemical pesticides, insecticides) of plant disease control	3
2.	Plant Physiology & plant genome	Plant physiology, Genetic basis of Plant genes, growth and development, response to disease/infection in plants, plant signaling pathways	8
3.	Plant diseases	Plant pathology and disease cycle, principle groups of plant pathogens belonging to: Bacteria, fungus, virus, nematodes, insect pests, other factors, diseases with major impact on plant productivity	10
4.	Molecular plant pathology	Molecular basis of genetic modification and crop improvement, RNAi technology, Baculovirus mediated bio-control and other tools to generate disease resistance	5
5.	Plant disease control	Classical breeding to modern genetic engineering tools for plants, plant secondary metabolites and their role in systemic acquired resistance (SAR)	5
6.	GM plants	Enhancing resistance with plant genes, developing genetically modified plants with improved disease resistance	5
7.	Bio-control methods	Integrated pest management, Pathogen derived resistance, Antimicrobial proteins, Plant bodies, PGPR (plant growth promoting rhizobacteria) and their role in disease control	6
		Total number of Lectures	42
Evaluation Criteria			
Components T1 T2 End Semester Examination		Maximum Marks 20 20 35 25 ()	
TA Total		23 () 100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Plants, genes and crop biotechnology. Maarten Chrispeels, David Sadava, 2nd edition, published by American society of plant biologists & ASPB foundation.

2	Molecular Biotechnology: principles and Applications, Bernard Glick, Jack J
2.	Pasternack, Cheryl Patten, 4 th edition, ASM press

PBL: Students prepare a writeup on biotechnological applications that have improved the crop productivity in various global scenarios. Assessment is done via viva and report content

AQUACULTURE Detailed Syllabus Lecture-wise Breakup

Lecture wise Breakup					
Course Code	15B1NBT834	Semester Summer	Semester Summer Month from May	Session July	2016-17
Course Name	Aquaculture				
Credits	4	Contact Hours	9		

Faculty	Coordinator(s)	Dr. Ashwani Mathur
(Names)	Teacher(s) (Alphabetically)	Prof Neeraj Wadhwa DR Ashwani Mathur

COURS	E OUTCOMES	COGNITIVE LEVELS
C511.1	Explain scope & significance of aquaculture at global and	Understand level
	Indian scenario	(C2)
C511.2	Compare different cultivation techniques for aquatic	Understand level
	organism	(C2)
C511.3	Apply sustainable aquaculture practices related to	Apply Level (C3)
	environment, community, business and farm management	IT 5 ···· (···)
C511.4	Identify hatchery and cultivation technology	Analyze level (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	History, definition, scope and significance of aquaculture, comparison of aquaculture with agriculture and commercial fisheries. Different aquaculture systems. Aquaculture - Global and Indian Scenario.	2
2.	Pond ecology	Ecology of culture ponds. Nutrient cycles, Laws of limiting factor. Fertilizations and manuring. Liming and application of fertilizers and manures. Significance and important groups of phytoplankton, zooplankton and benthos in culture ponds. Nutrient dynamics, algal blooms.Management of water and soil quality parameters. Correction of pH, measures for increasing the concentration of oxygen and reducing the concentration of ammonia and hydrogen sulphide.	4
3.	Cultivable Freshwater fishes	Criteria for the selection of species, Cultivable freshwater fishes- carps, airbreathing fishes, tilapia, trout, freshwater prawn, frogs.	4
4.	Brackishwater culture and mariculture	Brackishwater resources and fishes of commercial importance – Milk fish, mullet, pearl spot, seabass, shrimps, crabs; selection of site. Major brackish water culture systems in India, prawn filtration, Basabhanda, kharlands – Different organisms in Mariculture – mussel, edible oyster, pearl oyster and sea weeds. Scope of open sea farming in India. Important fin fishes cultured in the open seas and the culture systems. Present status and recent developments in mariculture.	4
5.	Culture of Prawns, Molluscs and Frog	Cultivable species of freshwater prawns and their biology – culture of <i>Macrobrachium</i> <i>rosenbergii</i> , Freshwater pearl culture – Present status of freshwater pearl culture and production in India. Prospects of culturing frog in India.	4
6.	Aquaculture for stable environment	Sewage fed fish culture, sewage treatment, Sewage cum fish culture in India. Fish in relation to public health, Larvivores fishes and mosquito eradication using fishes.	4
7.	Reservoir fisheries	Major reservoirs in India, measures for increasing production from reservoirs in India and abroad, Game fishery.	2

8.	Integrated	Recent development in integrated farming,	6
0.	Farming	Rice cum fish culture, Duck cum fish culture,	
		Poultry cum fish culture and Pig cum fish	
		culture. Organic aqua farming. Fish culture in	
		cages and pens. Running water fish culture.	
0	Systems in	Fish culture in cages and pens, race way.	1
).	freshwater	indoor tanks, canals, silo culture, Aquaponics,	-
	Aquaculture	Monoculture, polyculture, composite fish	
		culture.	
10.	Hatchery	Criteria for site selection of hatchery and	4
	technology,	nursery, design and function of incubators,	-
	design and	hatchery system-design and operation,	
	managment	hatchery protocols, rearing technology.	
11.	Culture of	Cultivation of different aquatic plants.	2
	aquatic plants		_
12.	Economics	Marketing and economics of fish seed and	2
		fish.	-
		Total number of Lectures	42
Evaluati	on Criteria		
Compon	ents	Maximum Marks	
T1		20	
T2		20	
End Semester Examination		35	
ТА		25 (Asignment1, Assignment2)	
Total		100	

Project Based Learning: students will understand the importance of aquaculture in economic growth and as potential entrepreneurial opportunity by understanding the types of aquacultures, pond and farm design, life cycles of fishes, crustaceans, molluscs and other aquatic flora and fauna, the economic attributes of sustainable fish farming and recent techniques of aquaculture. Students are encouraged to analyze the importance of aquaculture in India and its contribution to the economic growth of the nation

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1	T.V.R. Pillay, Aquaculture: Principles & Practices, Fishing News Books, New Bool	
1.	Cambridge University Press, Cambridge, UK	
2.	New M B, Freshwater prawn farming, 2000, CRC Publication.	
2	R. L. Welcomme: Inland Fisheries: Ecology & Management, 2001, Fishing News	
з.	Books.	
1	S De Silva (ed): Reservoir and culture based Fisheries: Biology & Management,	
4.	2001, ACAIR Proceedings.	
5	M. C. M. Beveridge and B. J. McAndrew: Tilapias: Biology & exploitations, 2000,	
з.	Kluwer Academic Publishers, London.	

Detailed Syllabus Lab-wise Breakup

Course Code	17M15BT112	Semester ODD (specify Odd/Even)	Semester IX	Session 20)22 -2023
Course Name	Biotechniques Lab-II				
Credits	3	Contact Hours		6	

Faculty	Coordinator(s)	Dr Ashwani Mathur
(Names)	Teacher(s) (Alphabetically)	Dr Ashwani Mathur, Prof Neeraj Wadhwa, Dr. Sonam Chawla, Dr. Vibha Gupta

COURSE OUTCOMES		
C170.1	Experiment with high end analytical techniques in biotechnology	
C170.2	Develop basic and applied skills in cell culture	
C170.3	Examine and analyse disease-specific drug targets	
C170.4	Analyse bioactive compounds from plant and microbial systems	

Module	Title of the	List of Experiments	No. of
No.	Module		Labs

1.	Analytical techniques	To run High-performance liquid chromatography (HPLC); prepare and analyse curcumin extract by HPLC; purification of plant extract			
2. Cell culture techniques		Preparation and sterilization of media for cell culture; subculture of animal cell lines; analysis and counting of adherent cells; cell cytotoxicity determination			
3.	Drug target SDS-PAGE analysis and fluorescent staining analyses		3		
4.	Natural product analyses	Extraction of antioxidant compound from <i>in vitro</i> grown plant and bacteria; purification of compound; antioxidant capacity analyses of extracts	3		
Evaluation Criteria					
Components		Maximum Marks			
Mid-Term Viva		20			
Day-to-Day (Lab record,					
attendance, performance)		60			
Final Viva		20			
Total		100			

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	5. Biotechnology Procedures and Experiments Handbook http://site.iugaza.edu.ps/mwhindi/files/BIOTECHNOLOGY-PROCEDURES-AND-EXPERIMENTS- HANDBOOK.pdf			
2.	Cornelia Kasper, Verena Charwat, Antonina Lavrentieva, "Cell Culture Technology" Springer, 2018			
3.	ChukwuebukaEgbuna, Jonathan ChinenyeIfemeje, Jaya VikasKurhekar, Stanley ChidiUdedi, Shashank Kumar, "Phytochemistry Volume 2" Apple Academic Press, 2019			
4.	Methods standardized in lab			
5.	Lab manual on Biotechniques http://inpressco.com/lab-manual-on-biotechniques/			

Course Code	18M11GE111	Semester SUMMER	Semester IX Session 2022- 23			
Course Name	Research Methodology and Intellectual Property Rights					
Credits	2	Contact Hours	2-0-0			
Faculty	Coordinator(s)					
(Names)	Teacher(s) (Alphabetically)					
COURSE (DUTCOMES:		COGNITIVE LEVELS			
After pursu	ing the above mentioned	course, the students will be able to:				
C101.1	explain the basic concepts and types of research		Understanding Level (C2)			
C101.2	define a research problem, its formulation, methodologies and analyze research related information		Analyzing Level (C4)			
C101.3	explain research ethics related	s, understand IPR, patents and their filing to their innovative works.	Understanding Level (C2)			
C101.4	explain and analyze th test of hypot	ne statistical data and apply the relevant hesis in their research problems	Analyzing Level (C4)			
Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module			
1.	Research	What is research? Types of research. What is not research? How to read a Journal paper?	3			
2.	Report writing	How to write report? Use of Mendeley in report writing. How to write a research paper? Problem identification and solving.	4			
3.	Ethics, IPR and Research methodologies	Research ethics, patents, intellectual property rights, plagiarism regulation 2018. Steps in research process and common methodologies to attempt solution to research paper.	8			
4.	Basics of statistics and probability distributions	Basic statistical concepts. Handling of raw data, Some common probability distributions.	7			
5.	Test of hypothesis and regression analysis	Hypothesis testing. Parametric and non- parametric data, Introduction to regression analysis.	8			
Total number of Lectures30(Course delivery method: open ended discussion, guided self-study, lectures)						
		Evaluation Criteria				
Components Maximum Marks						
End Semester Examination 40						
Assignments 30 (Quiz, Assignments) Total 100						

Project based learning: Students divided in small groups will be assigned topics related to patents, intellectual property rights, plagiarism, and statistics. Students can write a report/review paper and find its similarity through plagiarism software available online. Students may collect data and test the relevant hypothesis. They may study some data set and do its regression analysis. The main purpose is to expose students to a wider arena of applicable knowledge of the subject.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

Stuart Melville and Wayne Goddard, Research Methodology: An Introduction for Science & Engineering Students, Kenwyn, South Africa: Juta & Co. Ltd., 1996.

Kothari, C.R., Research Methodology: Methods and Techniques, New Age International, New Delhi, 2009.

Kumar, Ranjit, Research Methodology: A Step by Step Guide for Beginners, 2nd Edition, Sage Publications Ltd., 2005.

Ramappa, T., Intellectual Property Rights Under WTO, S. Chand, New Delhi, 2008.

Wayne Goddard and Stuart Melville, Research Methodology: An Introduction, Kenwyn, South Africa: Juta & Co, 2001.