Course Code		15B1NEC	731Semester ODD (specify Odd/Even)Semester VI Month from:		VII Session 2024 -2025 om: July to December				
Course Name Soft Comput		Soft Computi	ing in El	ng in Electronics					
Credits			3		Contact H	ours		3	3
Faculty (Na	ames)	Coordinator((s)	Dr. Vijay Khar	ce,				
		Teacher(s) (Alphabetical	lly)	y) Dr. Vijay Khare					
COURSE (OUTCO	MES						COGNITIVI	E LEVELS
CO1	Explai	n Soft computi	ng techi	niques and their	role in prob	lem solvin	g.	Understand	ling Level (C2)
CO2	Apply separal	basic concepts ble problems.	s of soft	computing tech	niques in va	arious line	ar	Applying	g Level (C3)
CO3	Analyz nonline	the Neural ear separable p	Networ roblems	k for classifica	tion and re	egression	in	Analyzin	g Level (C4)
CO4	Evaluate and compare solutions of different application using various soft computing approaches.			ng Level (C5)					
Module No.	Title o	f the Module	the Module Topics in the Module No. of Lectures for the modul				No. of Lectures for the module		
1.	Introdu	duction Introduction to Artificial Intelligence, Introduction of soft computing evolution of computing, Principle of Soft Computing, hard computing and soft computing, soft computing methods			ction of soft ple of Soft puting, soft	2			
2.	Introdu Neural archite	action to Network cture	ion to Network ure Neuron, Nerve structure, Synapse, Definition of neural network, Neuron models and n/w architecture Learning in Artificial Neural Networks, activation functions, Single Layer feed forward network, Multi layer feed forward network and recurrent network, Learning methods (Supervised, unsupervised and reinforced), Learning Rules (Hebbian Gradient Descent Competitive and Stochastic)			10			
3.	Feed forward and back Propagation Neural Network, algorithms and radial basis neural network, back propagation algorithms and radial basis neural network, Non linear activations operator, effect of learning rule coefficient. Application of neural network			10					
4.	Associ Memor	Associated Auto associative memory, Hetro associated memory bidirectional associated memory, Autocorrelators and Heterocorrelators, Applications				6			
5.	Fuzzy logic IntroductionIntroduction, classical and Fuzzy sets & operations crisp relation and fuzzy relation, Fuzzy rules based system				6				

6	Fuzzy Logic Membership Functions	Membership Functions, Fuzzy if-else rules, Fuzzy algorithms, Fuzzyfications and defuzzifications, Fuzzy Controller Design and its industrial applications	6			
7	Genetic Algorithms	Introduction of Genetic Algorithms, working principle, Genetic Operators, Crossover and mutation properties, Generation cycle, Genetic Algorithms in Problem Solving	7			
		Total number of Lectures	47			
Evaluation	Criteria					
Componen	ts	Maximum Marks				
T1		20				
T2		20				
End Semester Examination		35				
ТА		25 (Assignments, Attendance & Quiz)				
Total		100				

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	REFERENCE BOOKS: Jacek M. Zurada, Introduction to Artificial Neural Systems, Jaico Publishing House, 1994
2.	REFERENCE BOOKS: Simon Hykins, Neural Networks-A Comprehensive Foundation, Prentice Hall, ninth Indian reprint 2005
3.	Martin T. Hagan, Howard B. Demuth, Mark Beale, Neural Network Design-Martin Hagan,2014
4.	S. N. Sivanandam & S. N. Deepa, Principles of Soft Computing, Wiley - India, 2007
5.	M. Mitchell, An Introduction to Genetic Algorithms, Prentice-Hall, 1998
6.	Rajasekharan and Rai, Neural Networks, Fuzzy logic, Genetic algorithms: synthesis and applications, PHI-2003
7.	S. Rajsekaran & G.A. Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications" Prentice Hall of India. (Phi,) 2003

Course Code	15B1NEC733	Semester ODD		Semester - VII Session 2024 - 2025			2024 -2025
				Month	f rom - Ju	uly to Dec	ember
Course Name	Fundamentals of Embedded Systems						
Credits	3		Contact H	lours		3L	_
Faculty (Names)	Coordinator(s)	Mr. Ritesh Kur	nar Sharma	(Sec-62)			

•			
	Teacher(s) (Alphabetically)	Ritesh Kr. Sharma	
		•	

		COGNITIVE LEVELS
	derstand the fundamental concepts of embedded systems,	Understanding Level
pro	ocessor	(C2)
CO2 Ide	entify and configure on chip peripherals of the ATmega16	Applying Level (C3)
mic mic	crocontroller	
CO3 Exj	periment with embedded C programming for ATmega16	Analyzing Level (C4)
mic	crocontroller	
CO4 Inte	erface different sensors and actuators with ATmgea16	Creating Level (C6)
Mie Mie	crocontroller for developing embedded systems	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module	
1.	Fundamental for Embedded Developers.	damental for beddedEmbedded System and its applications, Future Trends of Embedded System, Design Parameters of Embedded System and its significance, Microprocessor Versus Microcontrollers, Microcontrollers for Embedded Systems, Embedded Versus External Memory Devices, CISC Versus RISC Processors, and Harvard Versus Von-Neumann architecture.		
2.	Detailed Study of AVR Microcontroller	ATmega16 Microcontroller (Basic architecture, Pin configuration, Memory organization (registers and i/o ports), Timers, on chip PWM, on chip ADC, Interrupts and Serial Communication.	10	
3.	Concept of Embedded 'C' programming	Introduction to C, Difference between C and Embedded C, Data Types used in Embedded C, Arithmetic & Logical Operators, Control Flow, If & If – else, While & Do – while, For, Switch & Case, Continue & Break, Array & String, Functions and Header files, Pointers.	6	
4.	Real World Interfacing with Microcontroller	Interfacing of single LED, Blinking of LED with timer and without timer, Interfacing of push-button and LED, Interfacing of 7-segment display, Interfacing of 8 push- buttons to control 7-segment display, Intelligent LCD Display, Interfacing of intelligent LCD display, Interfacing of Matrix Keyboard to control 7-segment display, ADC and DAC Modules, Interfacing of ADC0804, Interfacing with DAC0808, Different wave generation through DAC0808, Stepper Motor & DC Motor, Interfacing with stepper &	12	

		DC motor, Different Sensor Interfacing, (IR Sensor, DTMF, Temperature Sensor)	
5.	Concept of RTOS and Advanced Microprocessor	Real Time Operating System (RTOS), Types of real time tasks, Task Periodicity, Process state diagram, Kernel and Scheduler, Scheduling algorithms, Shared data (Resource) and Mutual Exclusion, Semaphore, Introduction to ARM, Features, ARM Pipeline, Instruction Set Architecture (ISA), Thumb Instructions, Exceptions in ARM, Embedded Wireless Protocols (Infrared Data Association (IrDA), Bluetooth, IEEE 802.11).	10
		Total number of Lectures	42
Evaluation	n Criteria	Total number of Lectures	42
Evaluation Componer	n Criteria nts	Total number of Lectures Maximum Marks	42
Evaluation Componen T1	n Criteria nts	Total number of Lectures Maximum Marks 20	42
Evaluation Componen T1 T2	n Criteria nts	Total number of Lectures Maximum Marks 20 20	42
Evaluation Componen T1 T2 End Semes	n Criteria nts ster Examination	Total number of Lectures Maximum Marks 20 20 35	42
Evaluation Componen T1 T2 End Semes TA	n Criteria nts ster Examination	Total number of Lectures Maximum Marks 20 20 35 25 (Assignments & Quiz)	42
Evaluation Componen T1 T2 End Semes TA Total	n Criteria nts ster Examination	Total number of Lectures Maximum Marks 20 20 35 25 (Assignments & Quiz) 100	42
Evaluation Componen T1 T2 End Semes TA Total	n Criteria nts ster Examination	Maximum Marks 20 20 35 25 (Assignments & Quiz) 100	42

muu	mineriucu Reading material. Mathol(3), 1100, Edition, 1 donisher, 1 car of 1 d
Refe	rence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Muhammad Ali Mazidi, "The AVR microcontroller and Embedded Systems using A

1.	Muhammad Ali Mazidi, "The AVR microcontroller and Embedded Systems using Assembly and C", 2nd Edition, Pearson Education, 2008.
2.	Frank Vahid / Tony Givargis, "Embedded System Design", Willey India, 2002.
3.	Santanu Chattopadhyay, "Embedded System Design", 1 st Edition, PHI Learning, 2010.

Detailed Syllabus

Course Code		15B19EC791	Semester Odd (specify Odd/Even)		Semester 7 th Session 2024 -2025 Month: July to December		
Course Na	me	Major Project Part-1	(.F)	,			
Credits	8 Contact Hours						
Faculty (Names) Coordinator(s) Megha Agarwal, Vishal Saxena							
		Teacher(s) (Alphabetically)	Abhishek Kash	nyap, Joysm	nita Chatte	erjee, Rahul K	Kaushik
COURSE OUTCOMESCOGNITIVAfter completion of this course, students will be able toLEVELS					COGNITIVE LEVELS		
C450.1	Understand the scholarly literature, identify the gaps and define project Understanding objectives in the area of Electronics and Communication Engineering. (C2)				Understanding level (C2)		
C450.2	Apply the available resources to obtain the solution of project objectivesApplying levelwithin stipulated time and following ethical and professional norms.(C3)			Applying level (C3)			
C450.3	3 Evaluate the outcomes of the project and find the applications based on (C5)					Evaluating level (C5)	
C450.4	150.4 Develop the skills to communicate technical and scientific findings effectively in verbal and written forms.			Creating level (C6)			
Evaluation Criteria							
Components Maximum Marks							
Mid Sem V	/iva	20					
Final Viva		30)				
Project Ret	, ort	50 20					
Total		100					

Course Code	16B1NEC832	Semester Odd	Semester VII Session 2024-2025				
		(specify Odd/Even)	Month from July- December				
Course Name	MIMO-OFDM	MIMO-OFDM APPLICATION TO WIRELESS COMMUNICATION					
Credits	3	Contact Hours	3				

Faculty (Names)	Coordinator(s)	Dr Alok Joshi
	Teacher(s) (Alphabetically)	Dr Alok Joshi

	COGNITIVE LEVELS	
At the compl		
C432-1.1	Understand the wireless communications and issues associated with it and comparing single carrier and multicarrier transmission schemes.	Understanding Level (C2)
C432-1.2	Identify the need of OFDM systems in high data rate applications such as LTE networks.	Applying Level (C3)
C432-1.3	Analyze various impairments associated with OFDM system and suggested solution.	Analyzing Level (C4)
C432-1.4	Explain MIMO systems and evaluate various diversity schemes along with estimating channel capacity.	Evaluating Level (C5)

Module No.	Subtitle of the Module	Topics in Module	No. of Lectures
1.	Introduction	Introduction to wireless networks, issues associated with wireless channel: fading, doppler spread, delay spread etc. Single vs multi carrier systems. Orthogonality principle, orthogonal frequency-division multiplexing (OFDM) block diagram, modulation, demodulation, cyclic prefix and issues associated with OFDM. Standard fading models	9
2	PAPR reduction	PAPR in OFDM systems, CCDF, Various PAPR reduction techniques, clipping and filtering/Windowing, selective mapping (SLM), partial transmit sequence (PTS),tone reservation (TR), tone injection, ACE, peak insertion (PI) techniques etc	7
3.	ICI cancellation	Frequency offset and its effect, Inter carrier interference (ICI), ICI cancellation schemes-ICI self-cancellation, correlative coding based ICI cancellation, conjugate cancellation etc.	7
4.	MIMO systems	MIMO channel model, antenna diversity, space-time coding, Alamouti's codes, MIMO detection algorithms- MIMO Zero- Forcing Receiver, MIMO MMSE Receiver, Singular value decomposition, Beam forming, MIMO channel capacity	12
5	LTE Networks	LTE-basic architecture, OFDM in LTE, resource allocation, SC-FDMA,	7

	Total number of Lectures	42	
Evaluatio	n Criteria		
Compone	nts Maximum Marks		
T1	20		
T2	20		
End Seme	ster 35		
ТА	25		
Total	100		
Project Ba	used Learning: Student will be able to develop code for computing PAPR, MIMO	O detection	
Algorithm			
Recomme	nded Reading material:		
1. Principl	es of Modern Wireless Communication Systems Theory and Practice by Aditya K	.•	
Jagannatha	m, Paperback, TMH, 2017		
2. MIMO-	OFDM Wireless Communications with MATLAB, by Yong Soo Cho, Jaekwon k	Kim, Won	
Young Yang, Chung-Gu Kang, Wiley, 2018.			
3. OFDM	or Wireless Communication Systems, Ramjee Prasad, ARTECH house.		

Detailed Syllabus

Lecture-wise Dreakup

Subject	17B1NEC736	Semester: ODD	Semester: 7 th Session 2024 -25
Code			Month: July to December
Subject Name	Essentials of VLSI Testing		
Credits	3	Contact Hours	3-0-0

Faculty	Coordinator(s)	Shamim Akhter			
(Names)	Teacher(s) (Alphabetically)	Shamim Akhter (ally)			
COURSE	OUTCOMES			COGNIT	IVE LEVELS
C432-2.1	Remember the fundation	Remember the fundamental of Digital System testing Remember			
C432-2.2	Understand Stuck-at algorithms	t faults	model and Fault Simulation	Understar	nding Level (C2)
C432-2.3	Applying ATPG on C	ombinat	ional and Sequential circuits	Applying	Level (C3)
C432-2.4	Analyzing Controllab and Sequential circuit	oility and ts	l Observability of Combinational	Analyzing	Level (C4)
C432-2.5	Design for Testabilit Test Vector Compress	esign for Testability (DFT), Built-In-Self-Test(BIST), and Evaluatinest Vector Compression			ng Level (C5)
Module No.	Subtitle of the Modul	e	Topics in the module		No. of Lectures for the module
1.	Introduction to VLSI T	esting	Types of tests, Test Process and Equipments, Automatic Test Equipment, Fault coverage, Defect level		5
2.	Fault Modeling		Stuck-at faults, Fault equivalence & dominance, Logic and Fault Simulation		8
3.	Testability measures		Controllability & Observability for Combinational and Sequential circuits, SCOPE algorithm		7
4.	Testing algorithms Combinational & sec circuits	for quential	Combinational ATPG, D-algorithm, PODEM, FAN, Sequential ATPG algorithms		12
5.	Design For Testabili BIST Architecture	ty and	and Introduction to Design for Testability (DFT), Scan Test, Built-In-Self-Test, Test Compression Techniques		11
			Total number of	Lectures	43

Evaluation Criteria		
Components	Maximum Marks	
T1	20	
T2	20	
End Semester Examination	35	
ТА	25	
Total	100	

Project Based Learning: Students will learn about implementation of different ATPG algorithms for combinational and sequential circuit with the help of assignments.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	M.L. Bushnell and V.D. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits, 1 st Edition, Springer, 2013, [TEXTBOOK]	
2.	Alexander Miczo, Digital Logic Testing and Simulation, 2 nd Edition, John Wiley & Sons, 2003	
3.	Laung-Terng Wang, Cheng-Wen Wu, Xiaoqing Wen, VLSI Test Principles and Architectures, 1 st Edition, Morgan Kaufmann, 2006.	

Subject Code	17B1NEC742	Semester: Odd (specify Odd/Even)	Semester7th Session 2024-2025Monthfrom July 24 to Dec. 24	
Subject Name	Introduction to data analysis with R			
Credits	3	Contact Hours	3-0-0	

Faculty	Coordinator(s)	Kapil Dev Tyagi
(Names)	Teacher(s)	Kapil Dev Tyagi

S. NO.	DESCRIPTION	COGNITIVE LEVEL (BLOOMS TAXONOMY)
C430-2.1	Demonstrate programming platform usage for data analysis and explain fundamental machine learning algorithms.	Understanding Level (C2)
C430-2.2	Apply continuous and discrete probabilistic models to fit distributions of given random variables.	Applying Level (C3)
C430-2.3	Analyze statistical tests such as z-test, t-test, Chi-square test etc. to inspect hypotheses.	Analyzing Level (C4)
C430-2.4	Choosing suitable data analysis techniques for solving given practical problems.	Evaluating Level (C5)

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Software	Introduction to R and MATLAB programming for data analysis.	10
2.	Probabilistic models	Probabilistic models: Events and their probabilities, Rules of probability, Conditional probability and independence, Distribution of a random variable, Expectation and variance, Families of discrete distributions, Families of continuous distributions	4
3.	Statistics	Descriptive statistics, Inferential statistics, Hypothesis testing and estimation (z-test, t-test, proportional z-test) ANOVA, Regression Implementation of these algorithms in R language	12
4.	4. Machine Learning Introduction to Unsupervised and Supervised machine learning algorithms like ordinary least squares method, k-NN technique, Logistic regression etc.		
5.	Simulations of data analysis techniques	Detailed simulation of ANOVA, Regression, and Machine learning techniques in Matlab/R languages.	5
6.	Data smoothing (optional)	Introduction to smoothing functions. Nonparametric smoothing, functional linear models, dimensional reduction functional principle components analysis.	3
	42		

Evaluation Criteria		
Components	Maximum Marks	
T1	20	
T2	20	
End Semester Examination	35	
ТА	25	
Total	100	

Practical implementation of theory-based learning: Each one of the students is assigned to write the codes for implementation of the algorithms covered in theory in various languages like R, MATLAB etc. This method of learning will help students to better understand the theory and its practical implementation. Practical knowledge acquired by the students in this course will boost their confidence and clarity on various topics and this ultimately help them in placement interviews and further motivate to start their own startup company.

Recommen Reference I	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	Anil Maheshwari, Business Intelligence and Data Mining Made Accessible, Createspace Independent Pub, 2014.		
2.	Eric Siegel, Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die, Revised and Updated, John Wiley & Sons, 2016.		
3.	Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press, 2014.		
4.	https://www.datacamp.com/courses/free-introduction-to-r		
5.	https://onlinecourses.science.psu.edu/statprogram/r		
6.	http://www.iiserpune.ac.in/~ayan/MTH201/Sahoo_textbook.pdf		

Subject Code	17B11EC733	Semester: ODD	Semester: 7 th Session : 2024-25 Month : from July to December
Subject Name	Optical Communicatio	n	
Credits	3	Contact Hours	3-0-0

Faculty	Coordinator(s)	Neetu Joshi
(Names)	Teacher(s) (Alphabetically)	Neetu Joshi

S. No.	Course Outcomes	Cognitive Levels
C412.1	Understand the conceptsrelated to structure, types, modes and transmission and propagation of optical fibers.	Understanding (C2)
C412.2	Illustrate the principles of operation and characteristics of Optical sources and receivers.	Applying (C3)
C412.3	Analyze different kinds of losses and signal distortion in optical fiber transmission.	Analyzing (C4)
C412.4	Evaluate the power and rise time budget of fiber optic link.	Evaluating (C5)

Module No.	Subtitle of the Module	Topics	No. of Lectures
1.	Overview of Optical fiber Communications	Electromagnetic Spectrum, Historical development and advantages of optical fiber communication, Elements of optical fiber transmission link, Optical laws and definitions, optical fiber modes and configurations.	3
2.	Optical fibers Structures	Optical fiber wave guides, Ray theory transmission, Total Internal Reflection, Acceptance angle, Numerical Aperture, Skew rays. Cylindrical fibers Modes, V Number, Mode Coupling, Step Index fibers, Graded Index fibers. Single mode fibers- Cut off wavelength, Mode Field Diameter, Effective Refractive Index.	4
3.	Signal Degradation in	Signal distortion in optical fibers-	7

	Optical fibers	Attenuation, Absorption, Scattering and Bending losses, Core and Cladding losses. Information capacity, Group delay, Types of Dispersion - Material dispersion, Wave-guide dispersion, Polarization mode dispersion, Intermodal dispersion, Pulse broadening. Optical fiber Connectors- Connector types, Single mode fiber connectors, Connector return loss.	
4.	Optical Sources	Light emitting diode (LEDs)-structures, materials, Figure of merits, Quantum efficiency, Power, Modulation, Power bandwidth product. Laser Diodes - Modes & threshold conditions, resonant frequencies, structures, characteristics and figure of merits, single mode lasers, Modulation of laser diodes, temperature effects, external quantum efficiency, and laser diode rate equations. Reliability of LED & ILD.	6
5.	Power Launching and Coupling	Source to fiber power launching: - Output patterns, Power coupling, Power launching, Equilibrium Numerical Aperture, Laser diode to fiber coupling, LED coupling to single mode fiber. Fiber Splicing- Splicing techniques, splicing single mode fibers. Multimode fiber joints and single mode fiber joints. Fibre alignment and joint loss.	6
6.	Photo detectors& Receivers	Optical detectors- Physical principles of PIN and APD, Detector response time, Temperature effect on Avalanche gain, Comparison of Photo detectors. Optical receiver operation:- Fundamental receiver operation, Digital signal transmission, error sources, Receiver configuration, Digital receiver performance, Probability of error, Quantum limit, Analog receivers.	7
7.	Optical System Design	Considerations, component choice, multiplexing.Point-to- point links, System considerations, Link considerations. Overall fiber dispersion in multi mode and single mode fibers.	7

		Rise time considerations. Distance consideration in optical transmission system. Line coding in Optical links, WDM Principles & Types of WDM, Measurement of Attenuation and Dispersion, Eye pattern.	
Total number of Lectures			40

Evaluation Criteria

Components	Maximum Marks
T1 20	
T2 20	
End Semester	Examination35
TA 25	
Total	100

Project Based Learning: Students will learn about the constituents of an optical link and their suitability/choice for any application. Understanding of various losses incur in an optical link provide requisite skills in design, analysis and evaluation of the performance of analog and digital optical fiber link. Students will be able to design an optical link with the given specifications. Designing based questions given in the assignments built-up the thought process of the students in the field applications.

Recommend Publisher, Ye	Recommended Reading (Books/Journals/Reports/Websites etc.: Author(s), Title, Edition, Publisher, Year of Publication etc. in IEEE format)		
1.	Gerd Keiser, Optical Fiber Communications, 5th Edition, McGraw-Hill International edition, 2017.		
2.	John M. Senior, Optical Fiber Communications, 5thEdition, PHI, 2014.		
3.	D.K. Mynbaev, S.C. Gupta and Lowell L. Scheiner, Fiber Optic Communications, Pearson Education, 2005.		
4.	Govind P. Agarwal, Fiber Optic Communication Systems, 5th Edition, John Wiley, 2021.		
5.	Joseph C. Palais, Fiber Optic Communications, 5th Edition, Pearson Education, 2005		

Course Code	18B12EC413	Semester OD	D Sem	Semeste Month:	r -VII Session 2024 -2025 July-Dec
Course Name	Digital Control Systems				
Credits	3	3 Contact H		Iours	3L
Faculty (Names)	Coordinator(s)	Ritu Raj			
	Teacher(s) (Alphabetically)	Ritu Raj			

COURSE OUTCOMES		COGNITIVE LEVELS
C432-3.1	Remember the basics of z transform, inverse z transform and solve the	Remembering
	difference equation.	Level(C1)
C432-3.2	Understand the continuous and discrete time state space representation.	Understanding
	Learn about different elements of a digital control system	Level (C2)
C432-3.3	Apply concepts of z transform and ZOH technique to determine z	Applying
	domain transfer function of open loop and closed loop systems and	Level (C3)
	perform system stability tests.	
C432-3.4	Analyze digital control systems using different techniques	Analyzing
		Level (C4)
C433-3.5	Design Digital Control Systems	Evaluating
		Level (C5)

Module No.	Subtitle of the Module	Topics	No. of Lectures
1.	Review of Z transform	z transform and inverse z transform . Relationship between s- plane and z- plane, Difference equation. Solution by recursion and z-transform.	3
2.	Review of state space techniques	Review of state space techniques to continuous data systems, state-space representation of discrete time systems- Transfer function from state space model-various canonical forms- conversion of transfer function model to state space model-characteristics equation- solution to discrete state equations.	5
3.	Introduction to Digital Control System	Basic Elements of discrete data control systems, advantages of discrete data control systems, examples. Signal conversion & processing: Digital signals & coding, data conversion & quantization, sample and hold devices, Mathematical modeling of the sampling process; Data reconstruction and filtering of sampled signals: Zero order hold, first order Hold.	8
4.	Transfer function and stability test	Digital control systems- Pulse transfer function. analysis of closed loop and open loop systems in z domain, Modified z- transfer function- Stability of linear digital control systems and Jury's stability test	8
5.	Analysis of digital control systems	Steady state error analysis, Root loci, Frequency domain analysis- Bode plots, Gain margin and phase margin.	8
6.	State feedback concept	Controllability and Observability, Response between sampling instants using state variable approach, Pole placement using state feedback.	5

7.	Digital System	Observer and controller design using pole placement	5
· •	Design		
		Total number of Lectures	42
Evaluation Criteria			
Components		Maximum Marks	
T1		20	
T2		20	
End Semester Examination		35	
TA		25	
Total		100	

Project Based Learning: Students will learn about the analysis and Design of Digital controllers with the help of assignments/simulations based projects. Some designing and simulation (Using MATLAB) based problems will be assigned to students.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	B. C. Kuo , "Digital control systems" (Second Edition) , Oxford University Press,2007.		
2.	K. Ogatta, "Discrete Time control systems", 2nd ed. PHI),1995		
3.	M. Gopal, "Digital Control and State Variable Methods", 3rd Edition, TMH, Sep-2008.		
4.	G. F. Franklin, J. D. Powell, M. Workman, Digital Control of Dynamic Systems, 3 rd Edition, Longman, 1998.		

Detailed Syllabus

Lecture-wise Dreakup

Course Code	19B12EC416	Semester odd	Semester 7 th Session 2024 -2025	
			Month from Jul. 24 to Dec. 24	
Course Name	Deep Learning for Multimedia			
Credits	3	Contact Hours	3-0-0	

Faculty	Coordinator(s)	Dr Juhi Gupta	
(Names)	Teacher(s) (Alphabetically)	Dr Juhi Gupta	
COURSE OUTCOMES			COGNITIVE LEVELS
C430-2.1	Compare various loss learning approaches	Understanding Level (C2)	
C430-2.2	Experiment with vario	Applying Level (C3)	
C430-2.3	Apply and analyze see	Analyzing Level (C4)	
C430-2.4	Utilize and compare v problems	Evaluating Level (C5)	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Preliminaries	Introduction to Linear Algebra, Calculus and Probability Theory	4
2.	Introduction to Neural Networks, Loss Functions and Optimization	Neuron Model and Network Architecture: Perceptron, Perceptron learning rule and proof of convergence. Performance Optimization, Steepest Descent, Stable Learning Rates and Widrow-Hoff Learning.	10
3.	Backpropagation and Generalization	Backpropagation: Multilayer Perceptrons, Function Approximation, Performance Index, Chain Rule, Backpropagating the Sensitivities, Convergence, Generalization., Methods for Improving Generalization: Early Stopping, Regularization, Relationship Between Early Stopping and Regularization	8
4.	Convolutional Neural Network (CNN) Architectures	Review: Feed forward neural net, Layers for Conv Nets, Feature Maps and Pooling, FC layer to Conv layer conversion, CNN to Classify Text and Images: LeNet5, AlexNet, VGG, ResNet.	10
5.	Sequential Networks	Recurrent Neural Networks, Adding Feedback Loops and Unfolding a Neural Network, Long Short-Term Memory, Recurrent Neural Network for word predictions, Autoencoders, Different Autoencoder Architectures, and Neural Language Models: Word Embeddings and Word Analogies,	10

	Word2vec.			
	Total number of Lectures	42		
Evaluation Criteria				
Components	Maximum Marks			
T1	20			
T2	20			
End Semester Examination	35			
ТА	25 [Assignments and Quiz]			
Total	100			
Project based learning: Each student in a group of 3-4 select a topic related to latest development in the technology and write done Algorithms and their corresponding code, This method of learning will help students to understand latest development in the industry once they land in to entry it will be a simple task to design and implement any given task. Knowledge acquired during this course will boost				

their confidence and clarity while attending any Interview related to placement activities and establishment of their own application based startup company related with latest and cutting edge technologies

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Introduction to Deep Learning, S. Kansi, Springer 2018		
2.	Pattern Recognition and Machine Learning, C.M. Bishop, 2nd Edition, Springer, 2011.		
3.	Deep Learning, I. Goodfellow, Y, Bengio, A. Courville, MIT Press, 2016.		
4.	The Elements of Statistical Learning, T. Hastie, R. Tibshirani, J. Friedman., 2nd Edition, 2008		
5.	Machine Learning Yearning, A. Ng, 2018		

Subject	19B12EC417	Semester: Odd	Semester 7 th Sess	ion 2024-2025
Code		(specify: Odd/Even)	to December	
Subject Name	Machine Learning and Statistical Pattern Recognition			
Credits	3	Contact Hours	3-0-0	
Faculty (Nan	nes)	Coordinator(s)	B Suresh	
Teacher(s)B Suresh(Alphabetically)(Alphabetically)				
				COGNITIVE LEVEL
S.NO	DESCRIPTION			(BLOOMS TAXONOMY)
CO1	Remember the concept of probability theory and Linear Algebra			Remembering Level (C1)
CO2	Understand the concept of Learning theory			Understanding Level (C2)
CO3	Apply the concept of Probability and Linear algebra theory in supervised learning, generative/discriminative learning, parametric/non-parametric learning,		Applying Level (C3)	
CO4	Analyze unsupervised and Reinforcement learning techniques for real time data.		Analyzing Level (C4)	
CO5	Develop the basic AI algorithms and evaluate them for text and web data processing applications.		Evaluating Level (C5)	
Module No.	Subtitle of the Module	Topics in the module		No. of Lectures for the module
1	Basic Familiarity	Familiarity with the basic probability theory, Familiarity with the basic linear algebra		6
2.	supervised learning	Generative/discriminative learning, parametric/non-parametric learning, neural networks, support vector machines, kernel methods		11

3.	unsupervised learning	Clustering: K-means, Gaussian mixture model, dimensionality reduction: Principal component analysis, Independent Component analysis	8
4. learning theory b		bias/variance tradeoffs; VC theory; large margins	9
5.	Reinforcement learning	Reinforcement learning, Markov Decision Process	4
6.	Recent applications of machine learning	Data mining, autonomous navigation, speech recognition, and text and web data processing	4
Total number of Lectures			42
Evaluation	Criteria		
Component T1 T2 End Semeste TA Total	ts er Examination	Maximum Marks 20 20 35 25 (Attendance: 5 Marks, Assignment: 15 Marks, Quiz: 5 Marks) 100	

Project based learning: Each student in a group of 3-4 select a topic related to latest development in the technology and write down Algorithms and their corresponding code, This method of learning will help students to understand latest development in the industry once they land in industry. It will be a simple task to design and implement any given task. Knowledge acquired during this course will boost their confidence and clarity while attending any Interview related to placement activities and establishment of their own application based startup company related with latest and cutting edge technologies.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Machine Learning A Probabilistic Perspective, Kevin P. Murphy.2012 MIT press.
2.	Computer Vision: Algorithms and Applications Richard Szeliski, 2019 Springer.
3.	The Elements of Statistical Learning Data Mining, Inference, and Prediction, Trevor Hastie, Robert Tibshirani Jerome Friedman.Second Edition 2017,Springer

Subject Code	20B12EC413	Semester (Odd)	Semester VII Session – 2024-25 Month - July-December
Subject Name	Basics of Antenna an	d Wave Propagation	
Credits	3	Contact Hours	3 (3-0-0)

Faculty	Coordinator(s)	Abhay Kumar, Ashish Gupta
(Names)	Teacher(s) (Alphabetically)	Abhay Kumar, Ashish Gupta Shweta Srivastava

S. No.	Course Outcomes	Cognitive Levels/
		Blooms Taxonomy
C431-1.1	Recall the concepts of Electromagnetic field theory, relate different types of antennas, and define antenna parameters.	Remembering Level (C1)
C431-1.2	Explain the working of wired antennas. Classify and compare different dipole antennas and loop antennas.	Understanding Level (C2)
C431-1.3	Build different configurations of Array Antenna and utilize their terminologies to construct different array antennas.	Applying Level (C3)
C431-1.4	Distinguish modes of propagation and examine the propagation of radio waves in different atmospheres.	Analyzing Level (C4)
C431-1.5	Design and develop different Broadband antennas, Aperture antennas, Reflector antennas and modern antennas. Estimate the radiation pattern, polarization and VSWR of the antennas.	Creating Level (C6)

Module No.	Subtitle of the Module	Topics	No. of Lectures
1.	Radiation Fundamentals	Antenna types, radiation, use of	8

	& Antenna Parameters	potential functions, radiated fields, far fields, Radiation from current element, Infinitesimal dipole, antenna parameters, radiation pattern, Directivity, numerical evaluation of directivity, Gain, efficiency, impedance, Loss resistance, Polarization, equivalent area, effective area and its relation to gain	
2.	Linear Antennas Loop Antennas	Linear antennas, current distribution Total power, radiation resistance, Short-dipole, center-fed dipole, Half-wave dipole, dipole characteristics, folded dipole, Small loop antenna, Loop characteristics	7
3.	Antenna Arrays	Antenna arrays, Broadside and End-fire arrays, Hansen- Woodyard array, Binomial arrays, Array theory Scan blindness in array theory, Aperiodic arrays	7
4.	Broadband Antennas, Frequency Independent antennas & Aperture antennas	Yagi-Uda arrays, helical antennas Log-periodic antenna Fields as sources of radiation; Horn antennas, Reflector antennas	7
5.	Modern antennas-	Reconfigurable antenna, Active antenna, Dielectric antennas, Electronic band gap structure and applications, Microstrip Antennas, Antenna Measurements - Test Ranges, Measurement of Gain, Radiation pattern, Polarization, VSWR	6
6.	Propagation of Radio Waves	Modes of propagation, Structure of atmosphere, Ground wave propagation, Free Space Wave Propagation, Ground Reflection, Surface Waves, Tropospheric propagation, Duct propagation,	8

		Troposcatter propagation, Flat earth and Curved earth concept, Ionospheric propagation, Sky wave propagation – Virtual height, critical frequency, Maximum usable frequency – Skip distance, Fading, Multi hop propagation, Electrical Properties of Ionosphere		
		Total number of Lectures	43	
Evaluation Criteria				
Components	Maximum 1	Marks		
T1	20			
T2	20			
End Semester Examination	35			
ТА	25			
Total	100			

Project based learning: Each student in a group of 4-5 will do project based on antenna designing and measurement. Each group will assign designing problems on different types of antenna with its real time applications. Apart from course different research paper will provide to the students then based on the research data students will solve different design problem and do discussion in class.

Recommended Reading (Books/Journals/Reports/Websites etc.: Author(s), Title, Edition, Publisher, Year of Publication etc. in IEEE format)
 1. John D. Kraus & RJ Marhefka, Antennas for all applications, The McGraw-Hill Companies, 5th edition, 2017
 2. C.A. Balanis, Antenna Theory, Analysis and Design. NY: John Wiley and Sons, 4th edition, 2016.
 3. WL Stutzman& GA Thiele, Antenna Theory and Design , John Wiley and Sons, 2nd edition,1997
 4. Edward C.Jordan and Keith G.Balmain" Electromagnetic Waves and Radiating Systems" Prentice Hall of India, 2015

Detailed Syllabus

Lecture-wise Breakup

Subject	22B12EC413	Semester	Semester: ODD Session: 2024-25 Month from July to December		
Code		(specify Odd/Even)			
Subject Name	Low Power CMOS VLSI Circuit Design				
Credits	3	Contact Hours	ntact 3 urs		
Faculty	Coordinator(s)	Dr. Garima Kapur	·		
(Names)	Teacher(s) (Alphabetically)				
S. No.		Course Outcor	nes	Cognitive Levels/ Blooms	
				Taxonomy	
CO1	Recall the need for lo static power dissipati	ow power VLSI circu on and factors affect	its, understand dynamic and ing them	Remembering (Level I)	
CO2	Understand the role of simulation possible at various levels of design Underst (Leve				
CO3	Demonstrate the imp power dissipation of techniques possible a	Applying (Level III)			
CO4	Analyze clock as a major source of power dissipation and distinguish various methods to reduce power			Analyzing (Level IV)	
Module No.	Subtitle of the Module	Topics	No. of Lectures		
1.	Introduction	Need for low pe of power dissipa circuits. Em approaches. Phy in CMOS device	ower VLSI chips, Sources ation on Digital Integrated erging Low power ysics of power dissipation es.	3	
2.	Device&Dynamic dissipation in CMOS, TransistorTechnology Impactsizing & gate oxide thickness, Impact ofon Low Powertechnology Scaling, Technology & Deviceinnovation.technology & Device			3	
3.	Power estimation : Simulation Power analysis and Probabilistic power analysis	SPICE circuit s simulation, cap static state pow estimation, arc data correlation Monte Carlo s signals, prob probabilistic po signal entropy.	imulators, gate level logic acitive power estimation, ver, gate level capacitance whitecture level analysis, analysis in DSP systems. imulation. Random logic ability & frequency, ower analysis techniques,	8	
4.	Low Power Design: Circuit level and Log level	ic Power consump & Latches desig low power di reorganization,	ntion in circuits. Flip Flops n, high capacitance nodes, gital cells library Gate signal gating, logic	8	

		encoding, state machine encoding, pre- computation logic	
5.	Low power Architecture & Systems:	Power & performance management, switching activity reduction, parallel architecture with voltage reduction, flow graph transformation, low power arithmetic components, low power memory design.	8
6.	Low power Clock Distribution :	Power dissipation in clock distribution, single driver Vs distributed buffers, Zero skew Vs tolerable skew, chip & package co design of clock network	6
7.	Algorithm & architectural level methodologies :	Introduction, design flow, Algorithmic level analysis & optimization, Architectural level estimation & synthesis.	6
		42	

Evaluation Crite	ria
Components	Maximum Marks
T1	20
T2	20
End Semester E	xamination 35
ТА	25(Attendance, Performance. Assignment/Quiz)
Total	100
Project Based 1 planning. Stude designing of dig	Learning: The course will teach the technical skill to accomplish as well as enhance project ents will be doing projects (in groups of 2-3) with given specifications, which will result in a ital integrated circuits for low power applications implemented through HSPICE.
Recommended	Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books,
Reference Book	s, Journals, Reports, Websites etc. in the IEEE format)
1.	Gary K. Yeap, "Practical Low Power Digital VLSI Design", KAP, 2012
2.	Rabaey, Pedram, "Low power design methodologies" Kluwer Academic, 2012
3.	Kaushik Roy, Sharat Prasad, "Low-Power CMOS VLSI Circuit Design" Wiley, 2009

Lecture-wise Breakup						
Course Code	23B12EC312	Semester: Odd 2024Semester: VII Session: 2024-2025Month from July to December 2024		er: VII Session: 2024-2025 from July to December 2024		
Course Name	Introduction to VL	oduction to VLSI Fabrication Technology				
Credits	3		Contact H	Hours	3	
Faculty	Coordinator(s)	Dr. Shivani Sharma				
(Names)	Teacher(s) (Alphabetically)					

COURSE	COGNITIVE LEVELS	
CO1	List the basic environmental requirements for the fabrication of electronic devices along with the fabrication steps.	Remembering [Level I]
CO 2	Illustrate the basics of various gaseous growth techniques and impurity additions.	Understanding [Level II]
CO 3	To apply the series of processes that establish the shapes, dimensions, and placement of required physical components of IC on the wafer surface layer.	Applying [Level III]
CO 4	Examine the knowledge of lithography, ion-implantation, and masking for the formation of the circuits on the silicon chip including p-n junction and BJT.	Analyzing [Level IV]

Modul e No.	Title of the Module	Topics in the Module	No. of Lectures for the module	COs Involved
1.	Cleanroom technology and Epitaxy	Clean room concept – Growth of single crystal Si, surface contamination, Chemical Mechanical Polishing, wafer preparation, DI water, RCA and Chemical Cleaning. Processing considerations: Chemical cleaning, getting the thermal Stress factors etc. Epitaxy : Physical Vapour Deposition, Vapors phase Epitaxy Basic Transport processes & reaction kinetics, doping & auto doping, equipments, & safety considerations, epitaxial defects, molecular beam epitaxy, equipment used, film characteristics, SOI structure.	8	CO1 CO2 CO4
2.	Oxidation and Diffusion	Oxidation: Growth mechanism & kinetics, Silicon oxidation model, interface considerations, orientation dependence of oxidation rates thin	8	CO2 CO4

<u>Detailed Syllabus</u>

		 oxides. Oxidation technique & systems dry & wet oxidation. Masking properties of SiO2. Diffusion: Diffusion from a chemical source in vapor form at high temperature, diffusion from doped oxide source, Ion Implantation, Annealing and diffusion from an ion implanted layer. Methods, Protection and Masking, Films 		
3.	Film Deposition	for doping, Films for interconnections, Films for ohmic contacts	5	CO3
4.	Lithography and Etching	Optical Lithography: optical resists, contact & proximity printing, projection printing, electron lithography: resists, mask generation. Electron optics: roster scans & vector scans, variable beam shape. X-ray lithography: resists & printing, X-ray sources & masks. Ion lithography, Reactive plasma etching, AC & DC plasma excitation, plasma properties, chemistry & surface interactions, feature size control & apostrophic etching, ion enhanced & induced etching, properties of etch processing. Reactive Ion Beam etching, Specific etches processes: poly/polycide. Trench etching.	10	CO4
5.	Metallization	Different types of metallization, uses & desired properties	4	CO3
6.	Device and Circuit Fabrication	Isolation, Self-Alignment, Planarization, Metallization, MOS based Silicon microcircuits, BJT based silicon microcircuits, GaAs based microcircuits	7	CO4
Evaluat Compor				
T2 End Sen TA Total				

Project Based Learning: The course will teach the technical skill to accomplish as well as enhance project planning. Students will be doing projects (in groups of 2-3) with given specifications, which will result them to know the steps of fabrication of any basic electronic device with given device process parameters.

Reco book	commended reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text as, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
1.	S.M. Sze, "VLSI Technology", John Wiley & Sons, 2000.
2.	Ghandhi, Sorab K. VLSI fabrication principles: silicon and gallium arsenide. John Wiley & Sons, 2008.
3.	Plummer, Deal and Griffin, "Silicon VLSI Technology", Pearson, 2015
4.	Sarkar, Chandan. Technology computer aided design. CRC Press, 2018.

Course Code		15B1NHS731		Semester OD (specify Odd/)	D Even)	Semeste Month f	r Session 2024 From July2024 to		4-25 December2024
Course Name Disaster Man			agemen	t					
Credits		3			Contact I	Hours		3-0	0-0
Faculty (N	ames)	Coordinato	r(s)	Dr Nilu Choud	lhary				
		Teacher(s) (Alphabetica	ally)	Dr Nilu Choud	lhary				
COURSE	OUTO	COMES						COGNIT	IVE LEVELS
C4O1-2.1	U pi	nderstand basic revention and ris	c conce k reduct	pt of disasters, ion	, and its t	types, dis	saster	Understan	ding(C2)
C4O1-2.2	А	pply different a	approac	hes of Disaster	r Risk Red	uction (D	ORR)	Applying	(C3)
C401-2.3	A th	nalyze and enlie country durin	hance ang disas	wareness of ir ter.	nstitutional	process	es in	Analyzing	g (C4)
C4O1-2.4	E di	valuate strateg	gies and e sensiti	es and develop skills to respond potential Evaluating sensitivity.				g (C5)	
Module No.	Title of the ModuleTop			s in the Module					No. of Lectures for the module
1.	Intro Disa	oduction to sters	Conce Resilie	Concepts and definitions of Disaster(Hazard, Vulnerability, 4 Resilience, Risks)					4
2.	Disasters: Classifications & Causes			Understanding Natural and manmade disasters. Social ,Economic, Political, Environmental, Health, Psychological.					
3.	Impact of Disaster on Caste, Class and Gender			Caste and disaster, Disaster discrimination, in terms of caste, class, gender, age location, disability, Role of Women's in Disaster					5
4. Approaches to Disas Disaster Risk reduction DRR, respon				ter cycle - its analysis, Phases, Culture of safety, ntion, mitigation and preparedness, community based Structural - nonstructural measures roles and nsibilities of community.					5
5. Disaster Management Act(2005) DM Act and Policy, plans					ans, Progra	mmes and	l Legis	lation.	3
6.	Inter betw and	r-relationship een Disasters Development	Factor impact emban	rs affecting Vulnerabilities, differential impacts, et of development of projects such as dams, nkments, changes in land-use and relevance of				5	

		indigenous knowledge, appropriate technology and local resources.			
7.	Disaster Risk Management in India	Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, and Health	5		
8	Risk Society	Risk Society in 1992, Ulrick Beck, Processes of Modernization, The new paradigm of risk society	3		
9	Global trends in disasters	Urban disasters, Pandemics(COVID2019), Epidemics, complex emergencies, Climate change, Agenda21:For Local actions,	4		
10	Disaster, Environment and Development	Environment Management, Waste Management, Types of Disaster Waste, Sources of Waste	4		
		Total number of Lectures	42		
Evaluation	n Criteria				
Components		Maximum Marks			
T1		20			
		20			
End Semes	ster Examination	35 25(D) : (D) : (D) D (: : (:))			
1 A Total		25(Project, Quiz, Class Participation) 100			

Project Based Learning: Students in group of 5-6 will be given project to understand the menace of disaster through waste deposition in our environment. To make this subject application-based, student develop cost effective and environmentally sound techniques and strategies for solid waste management. By installing high tech driven composters students can analyze and evaluate the implications of waste in our environment through this live project. Converting solid waste in organic manure, produced in college mess -canteen, later on that organic manure and liquid manure can be used for gardens and parks in college premises.

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	Government of India, 2009. National Disaster Management Policy.					
2.	Gupta Anil K, Sreeja S. Nair. 2011 Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi					
3.	Indian Journal of Social Work 2002. Special Issue on Psychosocial Aspects of Disasters, Volume 63, Issue 2, April					
4.	Alexander David, Introduction in "Confronting Catastrophe", Oxford University Press, 2000					
5	Coppola P Damon, 2007. Introduction to International Disaster Management					
6	Yojana : A DEVELOPMENT MONTHLY Magazine, Volume 61, January 2017					
7	S.K. Misra& V. K. Puri, Indian Economy, Himalaya Publishing House, 2011.					
8	Parasuraman, S. & P.V. Unnikrishnan, 2005, "Disaster Response in India: An Overview," India Disasters Report, Punjablok.					

9	Satapathy S. (2009) Psychosocial care in Disaster management, A training of trainers manual (ToT), NIDM publication.
10	Blaikie, P, Cannon T, Davis I, Wisner B 1997. At Risk Natural Hazards, Peoples' Vulnerability and Disasters, Routledge.
11	Dave, R.K. (2018), Disaster Management in India : Challenges and Strategies
12	Disaster Management and Rehabilitation, Rajdeep Dasgupta, 2007
13	Jensen, John R., 2007, Remote Sensing of the Environment: An Earth Resource Perspective, 2nd Ed., Up Saddle River, NJ: Prentice Hall
14	NDMA, 2010, National Disaster Management Guidelines , Role of NGOs in Disaster Management

Revised CO-PO and CO-PSO Mapping

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
C401-2.1						2	3	2		2		3		
C401-2.2						3	3	3	3			3		
C401-2.3						3	3	3	3	1		3		
C401-2.4						3	3	3	2	2		3		
Avg.						3	3	3	3	3		3		

SYLLABUS AND EVALUATION SCHEME

Course Code	16B1NPH732	Semester : ODD		Semeste	er VII Session 2024-2025		
				Month :	July-December		
Course Name	Green Energy and Clin	and Climate Modeling					
Credits	3		Contact Ho	ours	40		

Lecture-wise Breakup

Faculty (Names)	Coordinator(s)	Dr. Prashant Chauhan – JIIT 128
	Teacher(s)	Dr. Prashant Chauhan

COURSE O	JTCOMES	COGNITIVE LEVELS
C401-6.1	Recall the basic information about different energy resources, reserves and define the problem with fossil fuel	Remember Level (Level 1)
C401-6.2	Explain green house effect, modelling of temperature measurement and physics behind the global warming	Understand Level (Level 2)
C401-6.3	Demonstrate the basic principles and designs of different solar collectors and concentrators, and identify the best design/material/location to absorb maximum solar energy	Apply Level (Level 3)
C401-6.4	Analyse the potential and the output of renewable energy source using different designs under different conditions/location	Analyzing Level (Level 4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Man and energy, world and Indian production /reserve of conventional energy sources, alternative energy sources.	02
2.	The greenhouse effect	Physics behind greenhouse effect, Blackbody radiation, layer model depending on energy flux and temperature at earth surface, radiation effect on Greenhouse gases, temperature structure of the atmosphere, Heat, pressure, wind, feedback mechanism. Carbon Cycle and Climate, Fossil Fuels, Effect of Conventional energy sources.	10
3.	Solar energy	Nature and availability of radiation, estimation of solar energy radiation. Effect of receiving surface, location and orientation, heat transfer consideration relevant to solar energy,	06

		Characteristics of materials and surface used in solar energy absorption. Device for thermal collection and storage	
4.	Ocean Energy	Tidal energy, and its characteristics, tidal energy estimation, important component of tidal energy plant, single basin plant, double basin plant, turbine, tidal power plant development in India, wave energy, design parameters of wave energy plant, introduction and working of ocean thermal energy conversion,	06
5.	Wind Energy and Bio Mass energy	Introduction to wind energy, Nature, power, forces, conversion and estimation. Components of wind energy system types, safety and environment, Introduction to bio mass energy, conversion and utilization of biogas plants and gas fiers	10
6.	Basics of DT fusion, Magnetic confinement fusioFusion Energyfusion, present status of fusion reactors and fusioninternational and national level		6
		Total number of Lectures	40
Evaluation	Criteria		
Componer T1 T2 End Semes TA	nts ter Examination	Maximum Marks 20 20 35 25 (Quiz/Assignments: 6 marks, PBL: 10 marks)	

Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)						
1.	Global Warming : Understanding the forecast by David Archer, Wiley						
2.	Kothari D.P. renewable energy resources and emerging technologies, Prentice of India						
3.	G D, Non-conventional energy sources, Khanna Publishers						
4.	Duffie J A & Beckmann W A, Solar engineering of thermal process, Wiley-International Publication						

Project based Learning: Students will be given small projects in groups to enhance their understanding on the topics of energy issues including production, reserve, limitation and issues of conventional energy sources, alternative energy sources like solar energy, wind energy, ocean energy and fusion energy. Students will be asked to submit the report of given project and give presentations of the same.

Lecture-wise Breakup

Course Code		17B1NMA73	31	Semester Odd	d E	Semester VII Session		Session	2024 -2025
					Lven)	Month	Irom J	uly-Dec. 20	J24
Course Na	me	Applied Line	ar Algei	ora		T	2.0.0		
Credits		3			Contact F	lours	3-0-0		
Faculty (N	ames)	Coordinato	r(s)	Dr. Ram Surat	Chauhan				
		Teacher(s) (Alphabetica	ally)	Dr. Ram Surat	Chauhan				
COURSE will be able	OUTCO e to:	DMES : After	pursuing	g the above ment	tioned cours	se, the stu	dents	COGNIT	IVE LEVELS
C401-7.1	Recall linear o	basic concepts equations, quad	s of field dratic fo	l, matrices and d rms, ordinary di	eterminant, fferential ec	system o quations.	f	Remembe	ering level (C1)
C401-7.2	Explai matrice forms,	Explain vector spaces, linear transformations, rank, orthogonality of matrices, eigenvalues, eigenvectors, inner product spaces, bilinear forms, norm of a matrix, condition number.							nding level (C2)
C401-7.3	Apply solve a	the concepts o system of ord	f eigenv inary di	alues, eigenvect fferential equation	ors and thei	r properti	es to	Applying	Level (C3)
C401-7.4	Apply orthog	the concept of onalize a set of	orthogo f linearly	nality and ortho y independent ve	gonal matri ectors.	ces to		Applying	Level (C3)
C401-7.5	Analyz equation transfo	the existence ons and the dia ormation.	e and un gonaliza	iqueness of solu ability of matrice	tion of a system and linear	stem of li r	near	Analyzing	g level (C4)
Module	Title o	f the	Topics	s in the Module					No. of
190.	Modu	le							the module
1.	Vector Dimen	Space and sion	adVector Space, Vector subspace, linear dependence and independence, Span of a set, Dimension of a vector space, Direct Sum and Complement7					7	
2.	Linear Transf	ormation I	Linear Transformation and its algebra, and its matrix7representation, homomorphism, isomorphism, rank and nullsubspace, rank-nullity theorem, Solution of a system ofLinear Equations, Determinant					7	
3.	Linear Transf	ormation II	Chang functio	e of basis, Inversional, transpose	se of a linea	r transfor	matior	ı, Linear	5
4.	Inner H Metric	Product and	Inner p Orthor orthog	product space, M normal basis, Ort onalization.	letric and no thogonal Su	ormed spa bspaces,	aces. Gram-	Schmidt	8
5.	Eigen Eigen	Values and Vectors	Eigen diagon	values and Eiger alization, Simila	nvectors, M arity Transfo	odal matr ormation,	ix and Eigen	systems	9

		of real symmetric, orthogonal, Hermitian and unitary				
6.	Applications o	f Bilinear and Quadratic forms, Positive definite matrices,	6			
	Linear Algebra	Norm of a matrix, Condition number, Application to find				
		solutions of ordinary differential equations				
Tota	l number of Lectures		42			
Eval	uation Criteria					
Com	ponents	Maximum Marks				
T 1		20				
T2		20				
End S	Semester Examination	35				
TA		25 (Assignments, Quizzes)				
Tota	1	100				
Proj	ect Based Learning: 1	Each student in a group of 4-5 students will apply the concepts of eige	envalues and			
eigen	vectors to solve the or	dinary differential equations arising in various real-life problems.				
Reco	mmended Reading n	naterial: Author(s), Title, Edition, Publisher, Year of Publication etc.	(Text books,			
Refe	rence Books, Journals,	Reports, Websites etc. in the IEEE format)				
1.	Hoffman, K and Kunze, R., Linear Algebra, Fourth Edition, Prentice Hall of India, 2005					
2.	Strang, G., Linear Algebra and its Applications, 3 rd Ed., 1998					
3.	Noble, B. and Daniel, J., Applied Linear Algebra, Prentice Hall of India, 2000					
4.	Lipshutz, S. and Lip	som, M., Linear Algebra, 3 rd Edition, Schaum Series, 2001				
5.	Krishnamurthy, V., Mainra, V. P., and Arora, J. L., An Introduction to Linear Algebra, Affilated East-West, 1976					

Couse Description

Course Code		17B1NN	1A732	2 Semester - Ode		dd Semester VII S Month from Jul		Session 2024-25 ily - Dec 2024	
Course Name Applied Numerical Methods									
Credits		3			Cont	act Hours		3-0-0	
Faculty (Names)	Coordi	nator(s)	Dr. Ram Surat	Chauh	an			
		Teacher (Alphab	r(s) petically)	Dr. Ram Surat	Chauh	an			
COURSE	E OUTCO	OMES					0	COGNITIVE LEVELS	
After purs	suing the	above-me	ntioned cours	se, the students v	vill be	able to:			
C401-8.1	explain and nu	n the meth merical li	ods for roots near algebra.	of non-linear ec	luation	s, interpolation	n I	Understanding (C2)	
C401-8.2	apply equation equation	numerica ons, interp ons.	1 methods polation, diff	for system of ferentiation, inte	linear gration	r and non-lin n and differer	near ntial	Applying (C3)	
C401-8.3	analys related	e numerica problems	al methods fo	or finding approx	kimate	solutions of		Analyzing (C4)	
C401-8.4	evalua bounda	te comput ary value j	ational techn problems.	iques for approx	imatio	n, initial and		Evaluating (C5)	
Module No.	Title of Module	Title of the Topics in the Module Module					No. of Lectures for the module		
1.	Roots of linear Equation	of Non- s	Concept of methods to equations w	f round-off and o find roots for with their converge	trunca or one gence	ation errors. In or more no	terative onlinear	6	
2.	Interpola and Approxi	ation mation	Interpolatin Formulae f Spline Inter	ng polynomial, L or equi-spaced propolation, Least	agrang points, square	ge formula wit Divided diffe approximation	h error, erences, 1	, 7	
3.	Numeric Differen and Inte	Numerical Differentiation and IntegrationApproximation of derivatives, Newton-Cote's formulae, Gauss-Legendre quadrature formulae, Double integration					, 7		
4.	Numerical Linear AlgebraGauss-elimination and LU-Decomposition Methods, Iterative methods: Jacobi and Gauss Seidel Methods and their convergence, Power's method for the largest eigen-value, Jacobi and Householder's methods for eigen-values of real symmetric matrices10					10 t			
5.	Numerical SolutionsRunge-Kutta and predictor corrector methods for IVPs, Finite difference methods for BVPs, Shooting methods, Numerical solutions of parabolic and elliptic partial differential equations by Finite Difference Methods								
					Total	number of L	ectures	3 42	
Evaluatio Compone	Evaluation Criteria Components Maximum Marks								

T1		20				
T2		20				
End	Semester Examination	35				
TA		25 (Quiz, Assignments, PBL)				
Tota	al	100				
Pro j for t	Project Based Learning: Each student in a group of 4-6 will apply the concepts of numerical methods for the solution of ODE and PDE.					
Rec bool	ommended Reading materia ks, Reference Books, Journals	al: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text s, Reports, Websites etc. in the IEEE format)				
1.	Gerald, C.F. and Wheatle	y P.O., Applied Numerical Analysis, 6 th Ed., Pearson Education, 1999.				
2.	Conte, S.D. and deBoo 1980.	or, C., Elementary Numerical Analysis, 3 rd Ed., McGraw-Hill,				
3.	Gupta, R.S., Elements of	f Numerical Analysis, 1 st Ed., Macmillan 2009.				
4.	Jain, M.K., Iyengar, S Engineering Computation	S.R.K. and Jain, R.K. , Numerical Methods for Scientific and n 5 th Ed., New Age International, New Delhi, 2007.				
5.	Smith, G.D., Numerical	Solution of Partial Differential Equations, 2 nd Ed., Oxford, 1978.				

Subject Co	ode	17B1NPH73	H731 Semester: Session :2024 Odd VII Sem Month: July-			-25 December			
Subject Na	ame	Introduction	to Quar	ntum Information	n Processin	g (IQIP)			
Credits		03			Contact I	Hours	03		
Faculty (N	lames)	Coordinato	r(s)	Dr Sandeep M	ishra				
Teacher(s) (Alphabetically)			ally)	Dr Sandeep Mishra					
COURSE OUTCOMES COGNI						COGNIT	IVE LEVELS		
C401.1	Correla quantu	ate Quantum	Informa tion and	tion Processing computation.	and their	applicatio	ons in	Remember Level (Level 1)	
C401.2	Explai circuit crypto	n quantum in s. Their apj graphy and cor	formation plicatior nmunica	on, Qubit, quan ns in quantur ations.	tum gates, n comput	and qua ing, qua	intum intum	Understar (Level 2)	ıd Level
C401.3	Demon related algorit	Demonstrate the use of basic principles in solving various problem related to quantum circuits with the use of linear algebra and many algorithms and protocols.					olems many	Apply Lev (Level 3)	vel
C401.4	Prove and estimate solution of numerical problems using physical and mathematical concepts involved with various quantum circuits.					al and	Evaluate Level (Level 5)		
C401.5 Design of quantum circuits of desired output for quantum cryptography applications.					Create Le (Level 6)	vel			
Module No.	Title o Modu	f the le	Topics	s in the Module					No. of Lectures for the module

No.	Module		Lectures for the module
1.	Introduction and Overview	What is information? Why do we need to know how to manage the information? Is information independent of physical laws used to store and process it? What is the present status of the subject and how far can we go? A brief history of Quantum information theory and quantum computation. Definitions of classical information, quantum information and their differences.	4
2.	Elements of quantum theory	Vector space, Hilbert space, Inner, outer product, Linear operators, Pauli matrices, eigenvectors, eigenvalues, Tensor products and Trace. Probability interpretation; Measurement problem; Hilbert space. Basic ideas of classical information theory; Measures of information (information content and entropy); Bell measurement and entanglement, Schmidt decomposition, Holevo bound, Bloch sphere and no cloning Theorem. Classical theory of computation; Universal computer; Turing machine; Computational complexity; Uncomputable functions; Shortcomings of classical information theory and necessity of quantum information theory.	10
3.	Quantum	Quantum bit (Qubit); Quantum gates (theoretical ideas and	10

	computing	experimental gates); Quantum circuits and practical implementation of qubit operations. Quantum algorithms; Simulation of physical systems; Quantum complexity, Deusch's algorithm, Deusch-Josza algorithm, Simon's Algorithm, Shor's factorization algorithm and Grover's search algorithm.	
4.	Quantum teleportation and superdense coding;	Quantum data compression; Entangled states, concepts and generation. Quantum cryptography; Classical cryptography; RSA and its limitations, Quantum key distributions; different protocol BB84, B92, GV protocol etc. Experimental quantum information processors (ideas related to ion trap, MRI, quantum dot, geometric phase, linear optics-based quantum computers); Quantum error correction.	10
4	Recent ideas on experimental quantum information	Recent ideas on experimental quantum information processors (quantum computers): their utility and problems (scalability, stability of output states)	4
5	Summary	Summary of entire course and a short of introduction to the present goals of quantum information technology.	2
		Total number of Lectures	40
Evaluation	n Criteria		
Components T1 T2 End Semester Examination TA Total		Maximum Marks 20 20 35 25 (5-attendance, 10-PBL, 6-Quiz/class test, 4-teacher assess 100	nent)

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Neil Gershenfeld, The Physics of information technology, Cambridge University Press.
2.	H Hirvensalo, Quantum computing, Springer Verlag.
3.	Lecture notes for Physics 229: Quantum Information and Computation, John Preskil
	nttp://www.theory.caneen.edu/people/preskm/pii229/#describe
4	Andewsteane, Quantum computing, Rep. Prog. Phys. 61, 117-173 (1998) or quant-ph/9708022
-	http://xxx.lanl.gov
5	P A M Dirac, The principles of Quantum mechnaics, Oxford University Press.
6	David J.C. MacKay, Information Theory, Inference and Learning Algorithm.
7	A. Barenco, Quantum Physics and Computers, Contemporary Physics, 37, 375-89 (1996).
8	C.H. Bennett, Quantum Information and Computation, Physics Today, Oct., 1995, 24-30 (1995).
9	A. Ekert, P. Hayden, H Inamori, Basic concepts in quantum computation, quant-ph/ 0011013.
10	D. Gottesman and H K Lo, From quantum cheating to quantum security, Physics Today, Nov., 2000.
11	J Preskill, battling decoherence: the fault – tolerent quantum computer. Physics Today, 24-30, June 1999.
12	A. M. Steane and W. Van Dam, Physicists triumph at guess my number, Physics Today, 35-39, Feb. 2000.
13	V. Vedral and M. B. Plenio, Basics of quantum computation, Prog. Quant. Electron, 22 1-39 (1998)
14	A. Zeilinger, Fundamentals of quantum information, Physcs World, 11, March, 1998.

Course Code		17B1NPH732 Ser		Semester: ODD Semester Month fr		nester: 7 th Session: 2024 -2025 nth from July to December			
Course Na	me	Nanoscience	zience and Technology						
Credits			3		Contact H	Iours		3	
Faculty (N	ames)	Coordinato	r(s)	Prof. Navendu	Goswami				
		Teacher(s) (Alphabetica	ally)	Prof. Navendu	Goswami				
COURSE	OUTCO	OMES						COGNIT	IVE LEVELS
C401-4.1	Define other t Techno	the Nanoscie erminologies a ology	nce and ind deve	l Technology an lopments involv	nd to know red with Na	about va anoscienc	rious e and	Remember	ring (C1)
C401-4.2	Classif type nanom	by the nanomation of materials aterials	erials de classes	epending on the and explain	nature of din the basic	mensiona concept	lities, s of	Understan	ding (C2)
C401-4.3	Apply numer	the concepts ical problems	of Nan	oscience for so	lving the t	heoretical	and	Applying	(C3)
C401-4.4	Detern charac	nine the pr terization tools	operties	of nanomat	erials thro	ough su	itable	Analyzing	(C4)
Module No.	Title o Modu	e of the Topics in the Module				No. of Lectures for the module			
1.	Introduction Development of nanoscience and nanotechnology, naturally occurring nanomaterials, Crystallinity of nanomaterials, Metallic nanostructures, Semiconductor nanostructures Magnetic nanomaterials, Chemically assisted nanostructures, Growth in 2-D nanostructures, Carbon nanomaterials					10			
2.	Properties of NanomaterialsSurface to volume ratio, Surface states and energy, Nanoscale oscillators, Confinement in nanostructures, Density of States and number of states of 0-, 1-, 2-, 3- dimensional systems, Change in Band structure and gap, Energy levels, confinement energy and emission in nano, Eluorescence by ODs. Concept of Single electron transistor					5			
3.	Nanomaterials Introduction to synthesis techniques, Top down and bottom up approach, Biological methods, Sol-gel method, Nucleation and growth, Ball Milling technique, Chemical vapor deposition, Physical Vapor deposition: Concept of Epitaxy and sputtering, Basics of Photolithography and its limitations, Soft Lithography and Nanolithography				10				
4.	Charac Nanon	eterization of naterials	Resolv micros measu modifi Theory analys	ving power (lacopes and the rements, Conce cation by NSOI and working, is, Merits/demer	Rayleigh a leir limitat ept of Fa M, Basic pr Character its of SEM,	and othe tions for r and M rinciple, I ization p TEM, ST	er cri nan Near Design rocedu M, AI	teria) of ostructure field and of setup, ire, result FM	5
5.	Application ofNanoelectronics,Nanobiotechnology,Catalysisby10					10			

	Nanomaterials	nanoparticles, Quantum dot devices, Quantum well devices, High T _c nano-Superconductors, Nanomaterials for memory					
		application, CNT based devices, MEMS and NEMS					
	40						
Eval	uation Criteria						
Com	ponents	Maximum Marks					
T1		20					
T2		20					
End	Semester Examination	35					
TA		25 [PBL (10 M), 2 Quiz (6 M), Attendance (5 M)					
		and Internal Assessment (4 M)]					
Tota	1	100					
Reco Refe	mmended Reading materian rence Books, Journals, Repo	ial: Author(s), Title, Edition, Publisher, Year of Publication etc. orts, Websites etc. in the IEEE format)	(Text books,				
1.	Nanostructures and nanomaterials: synthesis properties and application, Guozhong Cao, Imperial college press, London.						
2.	Introduction to nanotechnology, Charles Poole et al J John Wiley & Sons, Singapore.						
3.	The Handbook of Nanotechnology: Nanometer Structures, Theory, Modeling, and Simulation, A. Lakhtakia, Spie Press USA.						

Project based learning: Students would work on a project of their choice in the field of Nanoelectronics, Nanobiotechnology, Catalysis by nanoparticles, Quantum dot devices, Quantum well devices, High Tc nano-Superconductors, Nanomaterials for memory application, CNT based devices, MEMS and NEMS. In such projects students can apply the basic concepts of Nanoscience for solving theoretical and numerical problems. They can also work on analysis of a nanomaterial to determine its properties through suitable characterization tools such as SEM, TEM, AFM etc. The learning gained through this project would consolidate the understanding and provide skills of analysis and application in Nanoscience and Technology and thereby providing the employability prospects in the organizations and industries involved in the research and development of nanomaterials synthesis and characterizations, nanoelectronics, nanobiotechnology/nanomedicine etc.

Springer Handbook of Nanotechnology, Edited by B. Bhushan, Springer Verlag.

4.

					<u>Detailed Sy</u> Lecture-wise	<u>llabus</u> Breakup			
Course Code		18B12CS424		Semester: 7 th (ECE) Semester VII Month from J		Session 2024-2: uly to December	ession 2024-25 y to December		
Course	e Name		Algorithm Analys	is and Artific	cial Intelligence				
Credit	S			3		Contact Hour	'S		3-0-0
Facult	y (Name	s)	Coordinator(s)		Dr. Varun Srivastava				
			Teacher(s) (Alpha	abetically)	Dr. Varun Srivastava				
COUR	SE OUT	COMES						COGNITIV	E LEVELS
C401-1	2.1	Apply Sub complexit	ostitution method, Re	ecursion tree	and Master's theorem	to find the algori	thmic time		Apply Level (Level 3)
C401-1	2.2	Apply the programm	various programmir ing techniques to so	ng paradigms like greedy, divide & conquer and dynamic live the real life problems				Apply Level (Level 3)	
C401-1	2.3	Apply infe reasoning	erence mechanisms s for knowledge based	such as propositional logic, first order predicate logic, and probabilistic d systems.			tic	Apply Level (Level 3)	
C401-1	C401-12.4 Analyze the constraint satisfac		ne constraint satisfac	ction problems				Analyze Level (Level 4)	
C401-1	C401-12.5 Evaluate various informed, up problems and game playing a		various informed, un and game playing ac	informed and adversarial search algorithms to optimize AI-related cordingly.				Evaluate Level (Level 5)	
Sr.	Module				Chapters				Lectures
1.	Introduction			Time Complexity analysis: Master's Method. Divide and Conquer methods: Insertion Sort, Merge Sort, Quick Sort		ort	04		
2.	Divide and Conquer and Greedy Algorithms			Finding closest pair in 1D and 2D search spaces0,Knapsack Problem; Coin change Problem; Huffman Coding; Activity Selection;0Minimum Spanning tree, shortest path.0			06		
3.	Dynamic Programming Algorithms			Knapsack Problem; Coin change Problem; Matrix chain Multiplication, Longest common subsequence etc.			05		
4.	Artifici Spaces search	and Intelli	gence: Problem blem Solving by	State Spaces, Uninformed search strategies (BFS, DFS, DLS, IDS, Bidirectional search), Informed Search & exploration (A*, Heuristic, Local search algorithms, online search agents)			08		
5.	Gene	tic Algorith	ms	Travelling	Salesman Problem, Kn	apsack Problem			02

6.	Constraint satisfaction	problems	Constraint satisfaction problems (backtracking, variable and value ordering, local search), Adversarial Search (games, alpha beta pruning, elements of chance, state of art games)	07
7.	Propositional Logic		Knowledge based agents, PL, FOPL, Syntax and semantics, use, knowledge engineering), Inference in FOPL(Propositional vs First order inference	07
8.	Uncertainty		Probabilistic reasoning, Bayesian rule, Bayesian network, Inference, Reasoning over time	03
			Total number of Lectures	42
Evalua	tion Criteria			
Compo	onents	Maximum M	arks	
T1		20		
T2		20		
End Se	mester Examination	35		
TA 25(Attendan		25(Attendan	ce-10, Quiz/Assignments/Presentations/Mini-Project- 15)	
Total		100		

Project based learning: Each student in a group of 3-4 will be creating a mini-project that employs informed or uninformed searching algorithms or genetic algorithm-based code optimization. The implementation of the mini-project should be done using an open-source programming language of their choice. This project development endeavor will not only expand the students' knowledge but also enhance their employability in the IT sector.

Recom	mended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. BOOKS
1.	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein , Introduction to Algorithms, MIT Press, 3rd Edition, 2009
2.	Artificial Intelligence - A modern approach by Stuart Russel and Peter Norvig, PHI, 2008.
REFE	RENCE BOOKS Journals, Reports, Websites etc. in the IEEE format
3.	Artificial Intelligence Review: An International Science and Engineering Journal, Springer
4.	Nunes de Castro, Leandro, "Nature-Inspired Computing Design, Development, and Applications" IGI Global, 31-May-2012 - 435 pages
5.	Steven Skiena ,The Algorithm Design Manual, Springer; 2nd edition , 2008
6.	Knuth, The art of Computer Programming Volume 1, Fundamental Algorithms, Addison-Wesley Professional; 3 edition, 1997
7.	Horowitz and Sahni, Fundamentals of Computer Algorithms, Computer Science Press, 1978

Course Code	18B12HS412	Semester Odd	I	Semester Month fro	VII Session 2024-2025 om July 2024 - December 2024	
Course Name	HUMAN RESOURCE	ANALYTICS				
Credits	3	Contact Hours		Hours	3-0-0	
Faculty (Names)	Coordinator(s)	Dr Kanupriya Misra Bakhru				
	Teacher(s) (Alphabetically)	Dr Kanupriya Misra Bakhru Email id: kanupriya.misra@jiit.ac.in				

COURSE OUTCOM	MES	COGNITIVE LEVELS
C401-20 1	Understand different analytical techniques used for	Understanding Level
0401-20.1	solving HR related problems.	(C 2)
C401 20 2	Apply descriptive and predictive analysis techniques to	Applying Level
C401-20.2	understand trends and indicators in human resource data.	(C 3)
C401 20 2	Analyze key issues related to human resource	Analyzing Level
C401-20.3	management using analytical techniques.	(C 4)
C401 20 4	Critically assess and evaluate the outputs obtained from	Evaluating Level
C401-20.4	analytical tools and recommend HR related decisions.	(C 5)
C401 20 F	Create hypotheses, propose solutions and validate using	Creating Level
0401-20.5	appropriate analytical techniques	(C6)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Human Resource (HR) Analytics	Understanding the need for mastering and utilizing HR analytic techniques, Human capital data storage and 'big (HR) data' manipulation, Predictors, prediction and predictive modeling, Current state of HR analytic professional and academic training, HR's Contribution to Business Value, the Changing Nature of HR.	8
2.	Human Resource information systems and data	Understanding HR metrics and data, Data collection, tracking, entry, Data availability in the entire Employment Lifecycle, Approaches and costs of collecting HR related data, Analysis software options, Using SPSS, Preparing the data.	8
3.	Analysis Strategies	From descriptive reports to predictive analytics, Statistical significance, Data integrity, Types of data, Categorical variable types, Continuous variable types, Using group/team-level or individual-level data, Dependent variables and independent variables, Introduction of tools for HR data analysis: Correlation, Regression, Factor Analysis, Cluster Analysis, Structural equation modeling.	10

4.	Application of Human Resource Analytics	Workforce Planning Analytics, Diversity Analytics, Talent Sourcing Analytics, Talent Acquisition Analytics, Talent Engagement Analytics, Training and Intervention Analytics, Analytical Performance Management, Retention Analytics. Data Visualization and Storytelling using Tableau.	10
5.	Future of Human Resource Analytics	Rise of Employee Behavioral Data, Automated Big Data Analytics, Big Data Empowering Employee Development, Quantification of HR, Artificial Intelligence in HR.	6
		Total number of Lastures	40
		Total number of Lectures	42
Evaluation	Criteria	Total number of Lectures	42
Evaluation Componen	Criteria ts N	laximum Marks	42
Evaluation Componen T1	Criteria ts N 20	laximum Marks	42
Evaluation Componen T1 T2	Criteria Its N 20 20	laximum Marks	42
Evaluation Componen T1 T2 End Semes	Criteria Its N 20 20 ter Examination 3	laximum Marks	42
Evaluation Componen T1 T2 End Semes TA	Criteria ts N 20 20 ter Examination 3 25	laximum Marks)) 5 5 5 (Project, Quiz)	42

Project Based Learning:

Students, in groups of 5-6, are required to select a contemporary topic of HR. Further students are required to select a sector from where they will collect the data. Data should be collected from at least 50 respondents from the chosen sector. The information can be collected with the help of an interview or some kind of questionnaire pertaining to the HR topic chosen. Analysis of the collected data should be done using SPSS software. Findings should be discussed and recommendations should be suggested.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Edwards and Edwards, Predictive HR Analytics. Mastering the HR Metric, Kogan Page, Limited, 2019
2.	Banerjee, Pandey and Gupta, Practical Applications of HR Analytics, Sage, 2019
3.	Bhattacharyya, HR Analytics: Understanding Theories and Applications, Sage, 2017
4.	Isson, Harriott and Jac Fitz-enz, People Analytics in the Era of Big Data: Changing the Way You Attract, Acquire, Develop, and Retain Talent, Wiley, 2016
5.	Guenole, Ferrar and Feinzig, The Power of People: How Successful Organizations Use Workforce Analytics To Improve Business Performance, First Edition, Pearson, 2017
6.	Sesil, Applying Advanced Analytics to HR Management Decisions: Methods for Selection, Developing, Incentive and Improving Collaboration, Pearson, 2014

Course Description

Course Code		19B12MA41	2	Semester Odd		Semester VII Session 2024-25 Month from Aug 2024- Ded 2024		
Course Name		Generalized Fuzzy Set Theory with Applications						
Credits			3		Conta	ct Hours		3-0-0
Faculty (N	(ames)	Coordinato	r(s)	Dr. Mohd. Sar	faraz			
		Teacher(s) (Alphabetica	ally)	Dr. Mohd. Sar	faraz			
COURSE	OUTCO	OMES						COGNITIVE LEVELS
C401-21.1	Expla possi	ain the concept bility theory.	s of fuz	zy sets, its vario	us genera	alizations an	d	Understanding level (C2)
C401-21.2	Appl medi	y the theory o cal diagnosis p	f genera problems	alized fuzzy sets s.	s in patte	ern recogniti	on and	Applying level (C3)
C401-21.3	Anal decis	yze generalize ion making (M	d fuzzy i IADM)	information mea problems.	sures in	multiple attr	ibute	Analyzing level (C4)
C401-21.4	Exan possi	nine the proble bility measure	e the problems related to Dempster-Shafer theory and ity measures.				Analyzing level (C4)	
Module No.	ule Title of the Module Topics in the Module			No. of Lectures for the module				
1. Intuitionistic fuzzy sets		Intuitionistic fuzzy sets (<i>IFSs</i>) – Basic definitions and operations. Measures of entropy, similarity and discrimination between Intuitionistic fuzzy sets (<i>IFSs</i>). Applications of <i>IFSs</i> in medical diagnosis and pattern recognition.			10			
2. Hesitant fuzzy sets H f f			Hesita basic p – Dual fuzzy Hesita	Hesitant fuzzy sets – concepts, basic operations and basic properties. Extensions of hesitant fuzzy sets – Dual Hesitant fuzzy sets, Interval valued Hesitant fuzzy sets, Triangular Fuzzy Hesitant Fuzzy Sets, Hesitant Fuzzy Linguistic Term Sets.			10	
3.	3. Aggregation Operators Aggregation Operators – concepts, basic operations and basic properties, weighted aggregation operators, Ordered weighted averaging operator,Induced ordered weighted averaging operator.			ed	8			
4.	4. Pythagorean fuzzy sets Pythagorean fuzzy sets - concepts, and basic properties, Hesitant Py sets and their aggregation opera attribute decision making.		rean fuzzy sets - concepts, basic operations c properties, Hesitant Pythagorean fuzzy their aggregation operators in multiple decision making.		8			
5. Dempster-Shafer Demps Theory Bayesi function assignment		ster-Shafer Theory as an alternative to an networks. Frame of discernment, Belief on, Plausibility and basic probability ments.			6			

		Total number of Lectures	42			
Eval	uation Criteria					
Com	ponents	Maximum Marks				
T1	-	20				
T2		20				
End	Semester Examination	35				
TA		25(Quiz, Assignments, PBL)				
Tota	1	100				
Proj appl prol the a	Project based learning: Students are divided in a group of 4-5 to do a survey on the application based study of highlighted topics. The student can recognize the real life problems and try to understand by themselves that the structure of the problem similar to the application of the topics coloured above in the course.					
Reco book	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	Atanassov, Krassimir T., Intuitionistic Fuzzy Sets - Theory & Applications, Springer, 1999.					
2.	Xu, Zeshui, Hesitant Fuzzy Sets Theory, Springer Verlag, 2014.					
3.	Bhargava, A. K., Fuzzy Set Theory, Fuzzy Logic and Their Applications, S. Chand & Company Pvt. Ltd., 2013.					
	CengizKahraman, UzayKaymak, Adnan Yazici, (Editors), Fuzzy Logic in Its 50th Yea New					
4.	Developments, Directions and Challenges, Studies in Fuzziness and Soft Computing, Springer					
	Verlag, Vol. 341, 2016.					
-	Huchang Liao, ZeshuiXu	, Hesitant Fuzzy Decision Making Methodologies and	Applications,			
5.	Uncertainty and Operation	s Research, Springer Verlag, 2017.				

Detailed Syllabus Lecture-wise Breakup

Course Code	22B1NPH311	Semester: Odd	1	Semeste	er: 5 th Session: 2024-2025
				From: J	uly to December
Course Name	Engineering Material	s and Technolog	S y		
Credits 3		Contact Hours		3	

Faculty (Names)	Coordinator(s)	Dr. R.K. Gopal
	Teacher(s) (Alphabetically)	Dr. R.K. Gopal

COURS	COGNITIVE	
After co	mpletion of the course, students will be able to:	LEVELS
CO1	Recall the importance of engineering materials existing in the environment around	Remember Level
	us.	(Level 1) (C1)
CO2	Explain and compare the different properties of the materials along with their	Understand Level
	broad classifications.	(Level 2) (C2)
CO3	Apply the knowledge to analyze and use the different processes of the materials	Apply Level
	manufacturing.	(Level 3) (C3)
CO4	Apply the knowledge to develop/ choose materials for advanced engineering	Analyze Level
	applications including robotic, drone and aerospace.	(Level 4) (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Materials	Broad categorization of materials, Structure, property and performance relationship in materials. Engineering Materials Development in India.	4
2.	Material Properties	Review of material properties. Fracture, fatigue, diffusion and creep. Failure of materials. Material Deformations. Durability, oxidation, corrosion and degradation. Basics of Phase Diagrams and Diffusion.	8
3.	Ceramics and Metals	Metals and Alloys. Strengthening and degradation, corrosion prevention. Material Strengthening. Sub-classification, processing and properties of traditional and advanced ceramics. Phase diagrams using CALPHAD approach for ceramics and metals.	8
4.	Polymers and Wood	Introduction and classification, polymeric structure, effects of glass transition temperature, polymer mechanical properties. Classification and facets of wood.	3
5	Material Composites	Composites: polymer matrix, metal matrix, ceramic matrix, carbon- carbon. Longitudinal and transverse modulus. Composite making methods.	6
6.	Processing and Selection of Material	Manufacturing Processes and Design, Instruments and Furnaces. Materials, Environment and Sustainability. Automation in Materials Processing, Laser ablation of materials in additive manufacturing.	7
7	Development	Exploring materials development using computer software tools. Python packages and machine learning algorithm. Material Analysis using PyMKS	4
		Total number of Lectures	40

Evaluation Criteria		
Components	Maximum Marks	
T1	20	ļ
T2	20	ļ
End Semester Examination	35	
ТА	25	ļ
Total	100	

Reco	Recommended Reading material:		
1.	Callister, W. D., Material Science and Engineering: An Introduction, Wiley publication, 2014		
2.	Ashby, Michael F. & Jones, David, Engineering materials, Elsevier publication, 2018		
3.	Ashby, Michael F., Materials selection in mechanical design, Elsevier publication, 2019		
4.	Jones, Robert M., Mechanics of composite materials, Taylor & Francis publication, 2015		
5.	Chopra, Inderjit & Sirohi, Jayant, Smart structures theory, Cambridge press, 2013		
6.	Raghavan, V., Materials Science and Engineering, Prentice Hall of India, 2004		
7.	Bolton, W., Engineering Materials Technology, Elsevier, 2013, 1993		

Project Based learning: Different groups of students with 3-4 students in each group may be formed and these groups may be given to complete a task like collecting and classifying the materials for different applications. Students may be given a task of preparing data oncurrent and futuristic materials and processes. Students can explore and interact withdifferent industry and come out with their understanding and interpretation. They can use different commercially available software tools to do designing and prediction. Within each of these problem domains, the students will learn to work in a team. It will improve their analytical skills and the students will learn to achieve their common goal through mutual discussion and sharing of knowledge, information & understanding.

		Lecture wild	e Di canal	,	
Course Code	22B12EC415	Semester: Odd 2024		Semester: 7 th Session: 2024-25	
				Month	n from July to December
Course Name	5G Wireless Communication Systems				
Credits	3	Contact Hours		3	

Faculty	Coordinator(s)	Dr. Pankaj Kumar Yadav
(Names)	Teacher(s) (Alphabetically)	Dr. Pankaj Kumar Yadav

	COGNITIVE LEVELS	
C431-4.1	Recall the basic concepts and facts about different generations of wireless communication.	Remembering Level (C1)
C431-4.2	Demonstrate understanding of 5G RAN architecture and Integration of LTE and new air interface to fulfil 5G requirements.	Understanding Level (C2)
C431-4.3	Utilize the concept of 5G RAN architecture and Identify key 5G radio access technologies.	Applying Level (C3)
C431-4.4	Analyze the promising technologies like ultra-dense network (UDN), massive MIMO, cognitive radio (CR), IOT to address the network system capacity issue and spectrum sharing in 5G.	Analyzing Level (C4)
C431-4.5	Determine the importance of mmWave communication as a key disruptive technology for 5G.	Evaluating Level (C5)

Modul e No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to 5G wireless systems	Introduction and motivation for 5G, Evolving LTE to 5G Capability, Spectrum for 5G, features and requirements of 5G, 5G standardization	8
2.	5G RAN architecture	Different architecture of 5G, Basics of RAN architecture, Functional architecture and 5G flexibility, Integration of LTE and new air interface to fulfill 5G requirements, Physical architecture and 5G deployment, Massive centralized RAN,	8
3.	5G Radio Access Technologies	Machine-Type Communication (MTC), Massive MTC, Device-to-device (D2D) communications, Multi-carrier with filtering-Filter-bank based multi-carrier, Universal filtered OFDM, Non-orthogonal multiple access (NOMA), Sparse code multiple access (SCMA), beam division multiple access	10

4	5G Enabling technologies	Ultra dense networks for 5G, massive MIMO, self cancellation techniques, concept of cognitive radio and spectrum sharing techniques for 5G, IOT for 5G	8	
5.	mmWave Communication	Spectrum and regulations, Channel propagation, Hardware technologies for mmWave systems, Beamforming architecture, Physical layer techniques.	8	
Total number of Lectures				
Evaluation Criteria				
Components		Maximum Marks		
T1		20		
T2		20		
End Semester Examination		35		
ТА		25 (Assignment, Quiz)		
Total		100		

Project Based Learning: Students will learn about the basic features, requirements and spectrum of 5G. Further, they shall be able to learn the overall architecture of 5G in detail. Additionally, they will have deep knowledge about the enabling technologies used in 5G including spectrum sharing and IOT for 5G. Apart from that, they will also get to know the concept of mmWave communication for 5G.

Reco bool	Recommended reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Afif Osseiran, Jose F. Monserrat, Patrick Marsch, "5G Mobile and Wireless Communications Technology", Cambridge University Press, 2016			
2.	Erik Dahlman, Stefan Parkvall, Johan Skold, "5G NR: The Next Generation Wireless Access Technology", Academic, Elsevier, 2018			
3.	Hrishikesh Venkatarman and Ramona Trestian, "5G Radio Access Networks: Centralized RAN, Cloud-RAN, and Virtualization of Small Cells", Taylor and Francis, 2017			
4.	Saad Z. Asif, "5G Mobile Communications Concepts and Technologies", CRC Press, Taylor and Francis, 2019			