JAYPEE INSTITUTE OF INFORMATION TECHNOLOGY

M.Sc. MICROBIOLOGY (I SEMESTER)

2023-2024

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	15B1NBT832	Semester Odd (specify Odd/l		Sc (Mic Session	er B Tech VII/ Integrated VII/M ero) I/ MSc (Env Biotech) I 2023-2024 July to December
Course Name	Biostatistics and Its a	applications			
Credits	4		Contact I	Hours	4

Faculty (Names)	Coordinator(s)	Shalini Mani
	Teacher(s) (Alphabetically)	Shalini Mani

COURSE (COGNITIVE LEVELS	
C430-3.1	Explain the various statistical methods to design biological studies and data representation.	Understanding (Level 2)
C430-3.2	Apply different statistical methods and approaches to study the significance of a study.	Apply (Level 3)
C430-3.3	Examine the relationship between different parameters of a study.	Analyze (Level 4)
C430-3.4	Choose appropriate statistical methods, tools and resources including prediction, validation and evaluation of the biological studies.	Evaluate (Level 5)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Application and use of Biostatistics as a science, scope.	1
2.	Study design in various fields of research	general principles of study design and its implications for valid inference	1
3.	Sampling theory	Sampling scheme, simple/ systematic/ stratified/ cluster sampling, Sources of data collection	2
4.	Data presentation	Graphical, tabular, Mathematical, finding the central tendency, measure of variations	3
5.	Overview of different statistical methods used in the field of biological sciences.	Hypothesis testing, T-test, Chi square test, ANOVA, Sign Test, Wilcoxon Signed Rank Test, Wilcoxon Rank Sum Test, odds ratio, Binomial/normal/Poisson distribution of probabilities, determination of power of study and sample size calculation, regression analysis, correlation analysis,	13

6.	Analysis of data source	Assess data sources and data quality for the purpose of selecting appropriate data for specific research questions	3
7.	Selection of statistical methods	Identifying the appropriate statistical methods to be applied in a given research setting, applying the selected methods and analysis.	4
8.	Application of Biostatistical analysis.	Designing various studies of medical/ health/ Microbial/Agricultural/Genetics/Pharamaceutical science related studies. Data analysis using different methods Result interpretation	7
9.	Case studies	Based on various research studies and systematic reviews.	4
10.	SPSS, Stats at the bench	Introduction to SPSS, Entering data in SPSS editor. Solving the compatibility issues with different types of files. SPSS and working with descriptive statistics.	4
		Total number of Lectures	42

Evaluation Criteria	
Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
TA	25 (assignment, class test, quiz)
Total	100

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Pranab Kumar Banerjee, Introduction to Biostatistics (4 th Edition), S Chand and Company, 2015.			
2.	Veer Bala Rastogi, Biostatistics (3 rd Edition), Medtech, 2015			
3.	S. Kartikeyan, R. M. Chaturvedi, R. M. Bhosale, Comprehensive textbook of biostatistics and research methodology(1 st Edition), Bhalani Publishing House, 2016			
4.	B Antonisamy Prasanna Premkumar Solomon Christopher, Principles and Practice of Biostatistics, Elsevier India, 2017			
5.	Susan Holmes, Wolfgang Huber, Modern statistics for Modern Biology. Cambridge University Press, 2019			

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	19M21BT113	Semester Odd		Semeste	er M.Sc. Microbiology I
				Session	2023 -2024
				Month	from July-December
Course Name	Biomolecules				
Credits	4		Contact 1	Hours	4

Faculty (Names)	Coordinator(s)	Dr. Reema Gabrani
	Teacher(s) (Alphabetically)	Dr. Reema Gabrani, Dr. Shalini Mani

COURSE	OUTCOMES	COGNITIVE LEVELS
C113.1	Explain the biomolecules structure and function	Understand Level (C2)
C113.2	Analyze bioenergetics and metabolic pathways for physiological and pathological conditions	Analyze Level (C4)
C113.3	Apply the concepts of enzymes, hormones and signaling	Applying Level (C3)
C113.4	Illustrate the basics in genomics and proteomics	Understand Level (C2)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Carbohydrates and Bioenergetics	Chemical composition and bonding; Carbohydrates: Classification, basic chemical structure; General reactions of the functional groups; Physiological significance; Metabolism of carbohydrate: Glycolysis, TCA, gluconeogenesis, PPP, ATP role; Respiratory chain and oxidative phosphorylation	11
2.	Lipids	Classification, structure and function of major lipid subclasses; chylomicrons, LDL, HDL, and VLDL; Pathological changes in lipid levels. Formation of micelles, monolayers, bilayer, liposomes; biosynthesis of fatty acids and ketogenesis	7
3.	Proteins	Amino acids: Classification, Properties, Protein Structure: primary, secondary, tertiary and quaternary structure; separation techniques; biosynthesis of non-essential amino acids and catabolism of protein and amino acids in born errors of metabolism. Enzymes: kinetics, functions	7
4.	Nucleotides	Nucleic acid structure, Nucleotides and nucleosides; metabolism of purines and pyrimidines	6
5.	Hormones	Characteristics of hormones/ signalling molecules; function, signal transduction	6

6.	Introduction to Genomics and	DNA sequence analysis methods; gene disease association; Introduction and scope of proteomics	5
	proteomics		
		Total number of Lectures	42
Evaluation	n Criteria		
Compone	nts	Maximum Marks	
T1		20	
T2		20	
End Seme	ster Examination	35	
TA		25 (Presentation, Assignments)	
Total		100	

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	JM Berg, L Stryer, J Tymoczko, G Gatto, "Biochemistry", 9th Ed. San Francisco, 2019 WH Freeman				
2.	ljsbrand Kramer, "Signal transduction", Academic Press, 2015 Harper				
3.	VW Rodwell, D Bender, K M Botham, P J Kennelly, P A Weil, "Harper's Illustrated Biochemistry", 31st Ed. McGraw-Hill Lange 2018				
4.	Jeremy M. Berg , "Biochemistry" 8th Ed. W. H. Freeman 2015				
5.	DL Nelson and MM Cox, "Lehninger Principles of Biochemistry", 7th Ed. WH Freeman 2017				

Detailed Syllabus 1. Lab-wise Breakup

Course Code	19M25BT111	Semester Odd	Semester I Session 2023-24
		(specify Odd/Even)	Month from July-December
Course Name	Microbiology Lab	-I	
Credits	4	Contact Hours	8

Faculty	Coordinator(s)	Dr. Pooja Choudhary
(Names)	Teacher(s) (Alphabetically)	Dr. Garima Mathur, Prof. Indira P. Sarethy, Dr. Chakresh Jain, Dr. Pooja Choudhary

COUI	RSE OUTCOMES	COGNITIVE LEVELS
CO1	Understand various culture media, their applications and methods of sterilization	Understand (Level C2)
CO2	Apply standard microbiological techniques for isolation, culturing and enumeration of microorganisms	Apply (Level C3)
CO3	Make use of different methods for microbial identification and characterization	Apply (Level C3)
CO4	Compare methods of DNA isolation from microorganisms	Analyze (Level C4)

NEW COs

COUI	RSE OUTCOMES	COGNITIVE LEVELS
CO1	Understand various culture media, their applications and methods of sterilization	Understand (Level C2)
CO2	Apply standard microbiological techniques for isolation, culturing and enumeration of microorganisms	Apply (Level C3)
CO3	Apply different methods for microbial identification and characterization	Apply (Level C3)
CO4	Analyze purity of isolated DNA from microorganisms	Analyze (Level C4)

CO-PO-PSO Mapping

COs	PO1	PO2	PO3	PSO1
C170.1	2	2	1	2
C170.2	2	2	1	2
C170.3	2	2	2	2
C170.4	2	3	2	2

Title of the Module	List of Experiments	Hours
Isolation of microorganisms from different sources	Media preparation & sterilization – Bacteria; Media preparation & sterilization – fungi; Preparation of agar plants and slants; Culturing microorganisms on agar media by streaking / stab / point inoculation; Serial dilution of microbial culture; Estimation of microbial growth by colony counting	Week 1 – Week 3
Characterization of Microorganisms	Microbial diversity – characterization of bacteria & fungi; IMVIC Test; Computational tool for strain identification	Week 4 – Week 6
Microbial Growth	Effect of substrate / culture conditions on microbial growth; To study diauxic growth in bacteria; Data presentation & Analysis	Week 7 – Week 9
Molecular Biology	Isolation of DNA from bacteria; Isolation of bacteria from fungi; Agarose Gel Electrophoresis	Week 10- Week 12
	Total	12
ased Learning: Ider	ntify various computation tools for characterization of n	nicroorganisms.
on Criteria		
ents n Viva ay (Lab record, e_performance)	Maximum Marks 20	
	Module Isolation of microorganisms from different sources Characterization of Microorganisms Microbial Growth Molecular Biology ased Learning: Identicated the Criteria ents Niva	Module Isolation of microorganisms from different sources Media preparation & sterilization – Bacteria; Media preparation & sterilization – fungi; Preparation of agar plants and slants; Culturing microorganisms on agar media by streaking / stab / point inoculation; Serial dilution of microbial culture; Estimation of microbial growth by colony counting

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) https://microbeonline.com/imvic-tests-principle-procedure-and-results/ Vashist Hemraj, Sharma Diksha, Gupta Avneet (2013), A review on commonly used biochemical test for bacteria Innovare Journal of Life Science, Vol 1: Issue 1, 1-7 Manual of Microbiology: Tools and Techniques- Kanika Sharma ISBN 10: 8180520889 / ISBN 13: 9788180520884

20

100

Final Viva

Total

Course Name & Code: Microbial Genetics & Molecular Biology (19M21BT115), NBA Code: C112

Detailed Syllabus

Course Code	19M21BT115 C112	Semester: Ev	en		er: I Session: 2023-24 from: July to December
Course Name	Microbial Genetics	& Molecular B	ology		
Credits 3-1			Contact 1	Hours	4

Faculty	Coordinator(s)	Dr Sonam Chawla
(Names)	Teacher(s) (Alphabetically)	Dr Sonam Chawla, Dr Vibha Gupta

S. No.	DESCRIPTION	COGNITIVE LEVEL
		(BLOOM's
		TAXONOMY)
CO112.1	Explain fundamental principles of molecular biology	Understanding Level
		(C2)
CO112.2	Apply knowledge of microbial genome architecture and gene	Apply Level (C3)
	regulation	
CO112.3	Analyse various methods of gene transfer and extrachromosomal	Analysis Level (C4)
	inheritance	
CO112.4	Interpret different aspects of DNA mutations, DNA repair,	Understanding Level
	Linkage & Mapping	(C2)

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	The nature of	Discovery of DNA and experimental evidence, The	02
	Genetic material	structure of DNA and RNA; Melting of DNA,	
		Superhelicity, Genome architecture, Chromatin	
		arrangement, nucleosome formation, C value paradox,	
		central dogma	
2.	DNA replication and	DNA replication mechanism, enzymes involved and models	06
	repair	of DNA replication, DNA methylation, inhibitors of DNA	
		replication, DNA damage and repair: Molecular basis of	
		spontaneous and induced mutations, types of mutation, Ames	
		test, DNA repair pathways - excision, mismatch,	
		photoreactivation, Double Strand Break Repair	
3.	DNA transcription	Transcription machinery - various transcription enzymes and	07
		cofactors, initiation, elongation and termination, enhancer	

		sequences and control of transcription, Structure and function of RNA polymerase	
4.	DNA translation	The genetic code and protein structure, Mechanisms of translation - initiation complex, ribosomes and tRNA, factors, elongation and termination, <i>in vitro</i> translation systems, polycistronic/monocistronic synthesis, inhibitors of translation,	06
5.	Methods of gene transfer in Bacteria	Transformation - natural transformation systems, mechanism, chemical-mediated and electro-transformation; Conjugation - nature of donor strains and compatibility, interrupted mating and temporal mapping, F plasmid, Hfr transfer, horizontal gene transfer	04
6.	Plasmids & Movable genetic elements	Plasmid types, detection, replication, partitioning, copy- number control, properties of some known plasmids, Extrachromosomal inheritance	04
7.	Genetic control mechanism in prokaryotes	Operons, lac system, trp system for negative & positive gene regulation, lambda phage, complex operons	06
8.	Viral genome & Methods of gene transfer in Viruses	Introduction to viral genetics, viral life cycles and phage replication, Transduction - Generalized and specialized transduction; gene mapping by specialized transduction	04
9.	Linkage and gene Mapping	Recombination (homo and heterologous), linkage symbolism, single and double cross overs, linkage maps, genetic analysis, Recombination as a molecular biology tool.	03
		Total number of Lectures	42
	on Criteria		
Compone		Maximum Marks	
T1 T2 End Seme		20 20 35	
TA		25	
Total		100	

Recomn	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books,					
Reference	Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	Lewin's Genes XII by Jocelyn E. Krebs, Elliott S. Goldstein and Stephen T. Kilpatrick Jones and Bartlett Publishers, Sudbury, Massachusetts, 2018.					
2.	Molecular Biology of the Gene by J.D. Watson, T.A. Baker, S.P. Bell, A. Gann, M. Levin, R. Losick, 7th edition, Benjamin Cummings, San Francisco, USA, 2013.					
3.	Molecular Biology of the Cell by B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, 6th edition, Garland Science, New York and London, 2017.					
4.	Lehninger Principles of Biochemistry Seventh Edition – David L. Nelson; Michael M. Cox, 2017					
5.	An Introduction to Genetic Analysis by Suzuki DT, Griffiths AJF, Miller JH and Lewontin RC, WH freeman and Company, New York					

Project based learning: Students in groups will present applications of microbial mutations and horizontal gene transfer on human health, environment preservation

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. M. J. Pelczar, E. C. S. Chan and N. R. Krieg. *Microbiology: Concepts and Applications*. India: Tata McGraw Hill, 1993.

2.	M. T. Madigan, J. M. Martinko and J. Parker. <i>Brock Biology of Microorganisms</i> , 10 th Edition. New Jersey, USA: Prentice Hall, 2003.
3.	G. J. Tortora, B. R. Funke and C. L. Case. <i>Microbiology: An Introduction</i> , 8 th Edition. San Francisco, USA: Pearson/Benjamin Cummings, 2004.
4.	J. Black. Microbiology: Principles and Applications. New Jersey, USA: Prentice Hall, 2004.
5.	L. M. Prescott, J. P. Harley and D. A. Klein. <i>Microbiology</i> , 6 th edition. New York, USA: McGraw Hill, 2005.
6.	E. W. Nester. Microbiology Study Guide. New York, USA: McGraw Hill, 2004.

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	19M11BT111	Semester: Odd		Semester: 1st Session: 2022-2023 Month from: July to December		
Course Name	Microbial physiology a	icrobial physiology and diversity				
Credits	4		Contact Hours			3-1-0

Faculty (Names)	Coordinator(s)	
	Teacher(s) (Alphabetically)	Dr. Rajnish Prakash Singh (CC)

Sl. No.	DESCRIPTION	COGNITIVE LEVEL (BLOOM's TAXONOMY)
C110.1	Understand diversity amongst archaea, eubacteria and other microorganisms	Understanding level (Level 2)
C110.2	Understand ecological diversity, habitat interaction and microbial relationship.	Understanding level (Level 2)
C110.3	Apply concepts of microbial nutrition, growth requirements and associated physiological mechanisms leading to microorganism survival	Applying level (Level 3)
C110.4	Analyze the different modes of metabolism in microorganisms.	Analyzing level (Level 4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Microbial taxonomy and evolution of diversity	Phylogenetic and genotypic classification, Classic and molecular characteristics, Phylogenetic trees	2
2.	The Archae (Extremophiles and their diversity)	Introduction to Archaeal Taxonomy and Metabolism, Phylum Crenarchaeota: Habitat and energy metabolism, cold dwelling microbes (artic and antartic regions), hyperthermophiles. Phylum Euryarchaeota: extremely halophilicarchea, taxonomy and physiology of halophilicarchea. Methanogens – diversity and physiology. Thermoplasmatales—thermoplasma, Hyperthermophilic euryarcheota: Thermococcales and Methanopyrus.	4
3.	Gram negative and positive eubacteria	Diversity, characteristic features and significance: Spirochaetes - aerobic / microaerophilic motile, helical / vibriod - non motile gram negative curved bacteria - gram negative and positive rod and cocci - gram negative straight, curved & helical rods - sulfur	5

		electron transport, oxidative phosphorylation and theories of ATP formation, inhibition of electron transport chain. Electron transport chain in some heterotrophic and chemolithotrophic bacteria. Bacterial anaerobic respiration: Introduction. Nitrate, carbonate	
8.	Bacterial Respiration	chain in photosynthetic bacteria. Carbon dioxide fixation pathways. Bacterial aerobic respiration, components of electron transport chain, free energy changes and	5
7.	Bacterial photosynthesis	Photosynthetic microorganisms, photosynthetic pigments, and generation of reducing power by cyclic and non-cyclic photophosphorylation, electron transport	5
6.	Microbial nutrition and growth	Nutritional requirements of Microorganisms- Autotrophs, Heterotrophs, Chemotrophs, Copiotrophs and Oligotrophs. Transport Mechanisms - Diffusion- Facilitated Diffusion, Active transport- Group translocation. Different phases of growth - Growth curve - Generation time - Factors influencing microbial growth - Temperature, pH, Pressure, Salt concentration, Nutrients - synchronous growth and continuous cultivation. Diauxic growth, Sporulation - Endospore formation in bacteria. Chemotherapeutic agents as growth inhibitors	5
5.	Microbial Diversity of various habitats	Microorganisms in nature ecosystem, Ecological groups of Microorganisms, Microbial population interactions, Human- Microbe Interactions, The soil habitat, Water as a Microbial Habitat, Microflora of air, Microflora of foodstuff	5
4.	Diversity of other microorganisms	Distribution, importance, structure and characteristics of the fungal divisions, slime molds, the algal divisions, protozoans, general properties of viruses, their structures and classification, bacteriophages	7
		endosymbionts. Mycobacteria – Nocardioformis. Anoxygenic phototrophic bacteria – oxygenic photosynthetic bacteria – aerobic chemolithotrophic bacteria – budding and appendaged bacteria – sheathed bacteria – non photosynthetic bacteria - Myxobacteria – archeobacteria.	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Microbial Diversity by Colwd , D. 1999, Academic Press.

2.	Prescott L M, J P Harley and D A Klein (2005). Microbiology. Sixth edition, International
	edition, McGraw Hill.
3.	Advances in Applied Microbiology. Vol. 10. Edited by Wayne W. Umbreit and D. Pearlman. Academic Press.
4.	Brocks Biology of Microorganisms. 8th Edition. (International Edition - 1997) by Michael T. Madigan, John M. Martinko. Jack Parker. Prentice Hall Internation Inc.
5.	Microbial Ecology. Fundamentals and Applications by. Ronald M. Atlas and Richard Bartha. 2nd and 4th Edition. The Benjamin Cummins Publication Co. Inc.
6.	David white. The physiology and biochemistry of prokaryotes. Oxford university press. 4th edition (2011).

Course Code	19M21HS111	Semester: O	dd	Semest	er: 2023-2024
				Month	: July-Dec 2023
Course Name	Presentation and Co	Communication Skills			
Credits	2		Contact	Hours	2 (2- 0-0)

Faculty (Names)	Coordinator(s)	Dr. Ekta Singh
	Teacher(s) (Alphabetically	Dr. Ekta Singh

COURSE	OUTCOMES	COGNITIV E LEVELS
C101.1	Develop an understanding and appreciate the basics aspects of communication	Understand(C2)
C101.2	Assess the communication challenges of a diverse, global marketplace	Analyze (C4)
C101.3	Create & compose formal reports	Create (C6)
C101.4	Evaluate the effectiveness of business etiquettes and presentation skills	Evaluate (C5)
C101.5	Apply the acquired skills in delivering effective presentations	Apply (C3)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Communication Process, Grammar, and Vocabulary	Communication: Definition, Model, Channel, Goals Process of Communication: Linear Concept, Shannon-Weaver Model, the Two-Way Process Communication Traits: Communication Apprehension, Style, Argumentativeness and VerbalAggressiveness · Grammar: denotative and connotative words, subject-verb agreement · Techniques of Vocabulary Building	7
2.	Intercultural Communication	Recognizing cultural diverse world Developing Cultural Intelligence: High-ContextCultures and Low-Context Cultures Time as a cultural factor: Monochronic and Polychronic Time	6
		 Challenges of Intercultural Communication Developing Cultural for Adapting. 	

Evaluation Criteria Components		Aaximum Marks	8
			2
		Referencing, and Documentation	
		Structure, Format, Parts of a Report	
		• 5 W's and 1 H of a Report	
	Communication	Types of Report	
5.	Technical	Characteristics of a Report	4
		Reaching an Agreement	
		Solving Deadlocks	
		Strategies of Conciliation	
	Management	Stages in the Negotiation Process	
4.	Communication for Conflict Management	Negotiation, Mediation, and Conciliation	5
		Support Sample Presentations	
		Using Audio-Visual Aids: Presentation	
		· Preparing and Delivering a Presentation	
		· Face Facts, Positive Gestures, Negative Gestures, Lateral Gestures	
		movements	
	Business Etiquettes, and Presentation Skills	Ekman's classification of communicative	6

Mid Term Examination	30
(Presentation)	40
	30 (Assignment/Participation)
End Semester Examination	100
TA	
Total	

Project Based Learning: Students will be given a project which would require them to work in groups of 5-6 members, identify a TEDTalk and analyse its significance/relevance to the course. While the task of identifying the talk would help them revisit the entire course, analyzing and underlining its significance would help them attain an in depth understanding of the chosen topic. The most important learning however would be to appreciate and understand the importance of team work.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)							
1.	C.L.Bovee, J.V.Thill, Business Communication Today, 14th Ed, Global Edition Pearson Education, 2018.						
2.	R.C. Sharma and Krishna Mohan, Business Correspondence and Report Writing, Mc GrawHillEducation, 2016						
3.	Meenakshi Raman and Sangeeta Sharma, Technical Communication: Principles and Practice, Oxford University Press, 2015.						
4.	Anna Koneru, Professional Communication, Mc Graw Hill Education Pvt Ltd., 2017						
5.	Murli Krishna, Communication Skills for Engineers, Pearson, 2014						
6	Menu Dudeja, Communication Skills for Professionals, Satya Prakashan, 2017.						
7	Barun K. Mitra, Personality Development and Soft Skills, Oxford University Press, 2012						