		1	L	ecture-wise bre	акир				
Course Coo	le	19M21PH111	L	Semester: Ode	dd Semester: I Ses		er: I Ses	sion 2023 -2024	
						Month	from: Ju	ly to December	
Course Nar	ne	Classical Med	hanics						
Credits			4		Contact H	ours		3+1	
Faculty (Na	ames)	Coordinator		Anuraj Panwai	-				
		Teacher		Anuraj Panwai	·				
COURSE O	итсом	ES						COGNITIVE LEVELS	
CO1	Relate	terminology a	nd con	cepts of Newto	nian Mecha	nics, Lag	rangian	Remember Level	
	and H	lamiltonian ap	proach,	, Central field,	Rotationa	l motion	, small	(Level 1)	
	oscilla	tions, and spec	ial theo	ry of relativity.					
CO2	Explair	n various me	chanisn	n, models, de	rivations, a	ind appr	oaches	Understand Level	
	associa	ated with class	ical mec	hanics.				(Level 2)	
CO3	Solve r	numerical prob	lems fo	r various situatio	ons in classi	cal mecha	anics.	Apply Level	
								(Level 3)	
CO4	Analyz	e the results o	obtained	d for various ph	iysical prob	lems of c	classical	Analyze Level	
	mechanics.				(Level 4)				
Module	Title o	f the Module	Topics	opics in the Module				No. of Lectures for	
No.								the module	
1.	Introd	luction	Newton's Laws, Dynamical Systems, Stability				2		
			Analysis, Phase-space Dynamics.						
2	Lagran	gian	Gener	alised coordi	natos Hi	alonomic	and	8	
۷.	Dynan		nonho	lonomic syst	ems Scla	pronomic	and	0	
	Dynan	1105	rheond	omic systems	D'Alemh	ert's nr	incinle		
			Lagran	ge's equation	s Energy	equatio	n for		
			conser	vative fields Cv	clic (ignoral	ale) coord	dinates		
			Genera	alised potential	Variation	al Calcul	us and		
			Princip	ole of Least Actio	on.				
3.	Hamilt	tonian	Legend	dre transformation	tions. Ham	ilton eau	uations.	10	
	formu	lations:	cyclic	coordinates ar	nd conserva	, ation the	eorems,		
			, princip	le of lea	ast actio	on, ca	nonical		
			transfo	ormations, Poi	sson brack	kets, Ha	milton-		
			Jacobi	theory, Action-a	angle variab	les.			
4.	Two B	ody Central	Equiva	lent one bod	y problem	and e	ffective	5	
	Force	Problem	potent	ial; classificati	on of orb	oits; diffe	erential		
			equati	on for orbits, Vii	ial Theorem	n, Inverse	Square		
			Law o	f Force : Bour	nd state pr	oblem :	Kepler		
			proble	m; Kepler's la	ws and pla	anetary r	notion;		

Detailed Syllabus

		Kepler's equation; Laplace – Lenz vector.	
		Scattering Problem: elastic scattering, scattering	
		cross section, centre of mass and laboratory	
		frames, Rutherford scattering.	
5.	Rigid Body	Kinematics: degrees of freedom; space-fixed and	6
	Dynamics	body-fixed set of axes and orthogonal	
		transformations from one set to another; Euler's	
		angles; Euler's theorem on the motion of a rigid	
		body; infinitesimal rotations; moments of inertia,	
		inertia tensor and principal axes transformations;	
		Euler's equations of motion. Force free motion of	
		a rigid body; symmetrical top, Larmor precession;	
		gyroscope asymmetrical top.	
6.	Small Oscillations	Formulation of the problem; eigenvalue	4
		equations; frequencies of free vibrations and	
		normal coordinates; forced vibrations and the	
		effect of dissipative forces; simple examples.	
7.	Special relativity	Internal frames, Principle and postulate of	5
		relativity, Lorentz transformations, Length	
		contraction, time dilation and the Doppler effect,	
		Velocity addition formula, Four- vector notation,	
		Energy-momentum four-vector for a particle.	
		Relativistic invariance of physical laws, Minkowski	
		space.	
		Total number of Lectures	40
Evalu	uation Criteria		
Com	ponents Ma	aximum Marks	
T1	20		
T2	20		
End	Semester Examination 35		
ТА	25 [/	Attendance (5), 2 Ouiz/class tests (6), PBL in Assignm	ents (10) Student's
	p	erformance (4)]	
Tota	l 10	00	
Reco	mmended Reading material	: Author(s), Title, Edition, Publisher, Year of Publication	on etc. (Text books,
Refe	rence Books, Journals, Repor	ts, Websites etc. in the IEEE format)	
1.	Goldstein, Classical Mechar	nics –Narosa	
2.	Landau and Lifshitz, Mecha	nics - Pergamon	
3.	Rana and Joag, Classical Me	echanics – Tata McGraw Hill	
4.	Whittaker, Analytical Dynai	mics of Particles and Rigid Bodies - Cambridge	
5.	Raychaudhuri, Classical Me	chanics – Oxford	
6.	Sankara Rao, Classical Mec	hanics, Prentice hall of India	

Project based Learning (PBL): Students groups may be asked to submit reports on various physical problems on Newtonian mechanics, Lagrangian and Hamiltonian dynamics, central field problems, rotational motion, small oscillations and special theory of relativity. Students may be asked to make presentations on recently published articles on classical mechanics. Students may be asked to solve classical mechanics problems by using their expertise in computer language.

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code		19M21PH112	2	Semester: Odd		Semester: I	Session: 20	23-2024
						Month from:	July to Dec	cember
Course Na	me	Mathematica	l Physic	s				
Credits			4	Conta	act I	Hours	3-1	-0
Faculty (N	ames)	Coordinato	r	Dr. Vaibhav Rawoot				
		Teacher		Dr. Vaibhav Rawoot				
COURSE	OUTCO	OMES					COGNIT	IVE LEVELS
C111 1	Recall	basics of matr	ices, con	mplex analysis, differe	ntial	equations,	Remember	ring (C1)
UIII.I	special	al functions, Fourier and Laplace transformations, etc						
C111.2	Explai	n elements of l	elements of linear vector space, complex analysis, and Understanding (C2)					ding (C2)
C111.2	metho	ds of solving d	ifferenti	al equations of various	s typ	e		
	Apply	concepts of m	atrices,	complex analysis, diffe	erent	ial equations,	Applying	(C3)
C111.3	Fourie	r and Laplace	transform	mations, and group the	ory 1	to physical		
	proble	ms						
	Evalua	ate solution o	f physi	cal problems using r	matri	ices, complex	Evaluating	g (C5)
C111.4	analys	is, differential	equatio	ns, Fourier and Lapla	ce tr	ansformations		
	and gr	oup theory						
Module	Title o	of the	Topics	s in the Module				No. of Lectures
No.	Modu	le						for the module
1.	Vector	Analysis,	Vector	· algebra, gradient, di	iverg	gence and Curl	, Integral	8
	Matric	es and	theorem	ms, curvilinear co	ordu	nates and o	coordinate	
	Tensor	r Analysıs	transfo	ormation, Eigen va	lues	and eigen	vectors,	
			diagon	alization of matrix,	CO(۰	ordinate transf	ormation,	
			summa	ation convention, class	111ca	tion of tensors,	rank of a	
			tensor,	contravariant, cova	arian	it and mixed	tensors,	
			symme	etric and antisymmet	tric	tensors, contr	action of	
2	Comm	ar Analyzia	Alcoh	metric tensor. Curvini	near	coordinates	ity and	12
2.	Comp	lex Analysis	differe	ntiability of complex	num fun	etions Couchy	Riomann	12
			equatio	ons Analyticity and	sino	ularity points	-Kiemaini compley	
			integra	tion Cauchy integr	sing al 1	theorem evalu	vation of	
			residue	es and definite integrals	s. Ta	vlor and Lorent	z Series.	
3.	Differe	ential	Differe	ential operators, sec	ond	order linear	ordinary	8
	Equati	ons and	differe	ntial equations, Power	seri	es solution of d	ifferential	
	Specia	l functions	equation	ons Bessel's equation	on a	and solutions,	Bessel's	
	1		functio	ons, recurrence formu	ıla,	orthogonality	of Bessel	
			functio	ons, General solution	ns 1	to: Legendre,	Laguere,	
			Hermi	te, Beta and gamma f	unct	ions and their	properties	
			and i	nter relationships.	Gree	en's Function	and its	
			applica	ations.				
4.	Fourie	r and	Fourie	r series, Dirichlet's	cond	ditions, Fourie	r integral	8
	Laplac	e	theorem	m, Fourier sine and	cos	sine transforms	, Fourier	
	Transf	orms	Transf	forms of Dirac Delta	func	ction, solution	of partial	
			differe	ntial equation, Inte	egral	Transforms,	Laplace	
			transfo	orm: Conditions for L.	T., S	simple propertie	es of L.T.,	
			First a	nd Second shifting th	neore	ems, L.T. of de	erivatives,	

		solution of ordinary differential equation by L.T.					
5.	Group theory	Groups, Subgroups, Normal Subgroups, Quotient Groups,	4				
		Isomorphism Theorems, Simple Groups, Jordan Holder					
		Theorems, Sylow Probability Theory, Random variable,					
		Binomial, Poisson, and normal distribution, and central					
		limit theorem.					
		Total number of Lectures	40				
Eval	uation Criteria						
Com	ponents	Maximum Marks					
T1		20					
T2		20					
End	Semester Examination	35					
TA		25 [Attendance (5 M), Class Test/Quizzes (6 M), Internal a Assignments in PBL mode (10 M)]	assessment (04M)				
Tota	1	100					
Reco	mmended Reading materi	ial: Author(s), Title, Edition, Publisher, Year of Publication et	c. (Text books,				
Refe	rence Books, Journals, Repo	orts, Websites etc. in the IEEE format)					
1.	Mathematical Methods for	Physicists, by G. Arfken, Academic Press.					
2.	Introduction to Mathemati	cal Physics, by Charlie Harper, Phi Learning.					
3.	Advanced Engineering Mathematics by Creyszig						
4.	Advanced Engineering Mathematics by R K Jain and S R K Iyengar						
5.	Mathematical Physics, by	H.K. Dass.					
6.	Mathematical Methods in	Classical and Quantum Physics by Tulsi Das and S K Sharma					

Project Based Learning: Students will be given small projects in groups to enhance their understanding and interest in the course by corelating topics taught and their applications in solving different physical problems of real worlds. Students will be asked to submit the report of given project and give presentations of the same.

Course Name: Quantum Mechanics (19M21PH113)

COURSE OUTCOMES: Upon the completion of this subject, students will be able to

COURSE	OUTCOMES	COGNITIVE LEVELS
CO1	Recall basic requirement of Quantum Mechanics such as inadequacy of classical physics in black body radiation, photoelectric effect etc.	Remembering (C1)
CO2	Demonstrate the general structure of Quantum Mechanics such as vector space, Dirac's bra-ket notation, operator algebra, angular momentum algebra, uncertainty relation etc.	Understanding (C2)
CO3	Schrödinger equation and its applications as potential well cases, harmonic oscillator, hydrogen atom and in hydrogen like systems etc.	Applying (C3)
CO4	Analyzing the applicability of different Approximation Techniques such as WKB approximations, perturbation theory, variational methods for Anharmonic oscillator, Helium atom, Stark effect etc.	Analyzing (C4)

COs	PO1	PO2	PO3	PSO 1
C112-1	3	2		1
C112-2	3	3		1
C112-3	3	3		1
C112-4	3	3		1
C112	3	3		1

3: Strongly Related 2: Moderately Related 1: Weakly related Left Blank: Not related

<u>Detailed Syllabus</u> Lecture-wise Breakup

r			Ecclure wis	e Di cunup			
Course Co	ode	19M21PH113	Semester: ODDSemester: ISession:20Month from: July to I		ssion:2023 -2024 July to December		
Course Na	Course Name Quantum Mechanics						
Credits 4 Contact Hours 3+1			3+1				
Faculty (Names)		Coordinator(s)	Prof. Papia Chowdhury				
		Teacher(s) (Alphabetically)	Prof. Papia Chowdhury				
COURSE	COURSE OUTCOMES COGNITIVE LEVELS						COGNITIVE LEVELS
CO1	Recall basic requirement of Quantum Mechanics such as inadequacy of classical physics in black body radiation, photoelectric effect etc.			Remembering (C1)			
CO2	Demonstrate the general structure of Quantum Mechanics such as vector space, Dirac's bra-ket notation, operator algebra, angular momentum algebra uncertainty relation etc.			Understanding (C2)			
CO3	Schrödinger equation and its applications as potential well cases, harmonic oscillator, hydrogen atom and in hydrogen like systems etc.				Applying (C3)		
CO4	Analyzing the applicability of different Approximation TechniquesAnalyzing (C4)such as WKB approximations, perturbation theory, variational methodsfor Anharmonic oscillator, Helium atom, Stark effect etc.				Analyzing (C4)		
h	1						

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Inadequacy of classical Physics and advent of quantum physics (with specific attention to Planck's law, photoelectric effect, Compton effect, Specific heat, wave nature of mater, Davisson-Germer experiment, Stern– Gerlach, and Franck-Hertz experiment). Brief discussion on Schrodinger equation and solution of some simple problems.	3
2.	General structure of Quantum Mechanics	Basic ideas of linear algebra: vector space, inner product, Hilbert-space, Dirac's bra-ket notation for state vectors, bases and linear independence, eigen values and eigen vectors (with their physical meaning). Hermitian, normal, unitary and positive operators, Postulates of quantum mechanics,matrix representation of an operator, change ofbasis, unitary transformation. Eigen values and eigen functions of simple harmonic oscillator byoperator method. Commutators and Heisenberg's uncertainty principle.	10
3.	Schrödinger equation and its applications	Schrodinger wave equation (time-dependent and time- independent) and probability interpretation, Simple potential problems-wells, tunneling through a barrier and harmonic oscillator (One and three dimensional). Wave-function in coordinate and momentum representations. Spherically Symmetric potentials: The hydrogen atom and hydrogen like systems (e.g., Hydrogen molecular ion). A brief idea of open quantum systems.	10

4.	Angular Momentum Algebra	The angular momentum operator and their representation in spherical polar coordinates, eigen values and eigen functions of L^2 and L_z operators, ladder operators L^+ and L^- , Pauli's theory of spins (Pauli's matrices), angular momentum as a generator of infinitesimal rotations, matrix representation of J in ljm> basis. Addition of angular momenta, Computation of Clebsch-Gordoncoefficients in simple cases (J1=1/2, J2=1/2) Central forces with an example of hydrogen atom.	7
5.	Approximation Techniques	Time-independent perturbation theory for non-degenerate and degenerate states. Applications: Anharmonic oscillator, Helium atom, Stark effect in hydrogen atom, Variational methods: Helium atom. WKB approximations and their applications to 2 electron systems.	10
		Total number of Lectures	40
Evalu	ation Criteria		
Evalu Comp	ation Criteria ponents	Maximum Marks	
Evalu Comp T1	ation Criteria ponents	Maximum Marks 20	
Evalu Comp T1 T2	ation Criteria ponents	Maximum Marks 20 20	
Evalu Comp T1 T2 End So	ation Criteria conents emester Examination	Maximum Marks 20 20 35	
Evalu Comp T1 T2 End So TA	ation Criteria conents emester Examination	Maximum Marks 20 20 35 25 [2 Quiz (6M), Attendance (5M), Assignments in PBL ma	ode (10M),
Evalu Comp T1 T2 End Se TA	ation Criteria ponents emester Examination	Maximum Marks 20 20 35 25 [2 Quiz (6M), Attendance (5M), Assignments in PBL me Class performance (4 M)]	ode (10M),
Evalu Comp T1 T2 End So TA Total	ation Criteria oonents emester Examination	Maximum Marks 20 20 35 25 [2 Quiz (6M), Attendance (5M), Assignments in PBL ma Class performance (4 M)] 100	ode (10M),
Evalu Comp T1 T2 End Sc TA Total Recon Refere	action Criteria ponents emester Examination <u>nmended Reading materi</u> ence Books, Journals, Repo	Maximum Marks 20 20 35 25 [2 Quiz (6M), Attendance (5M), Assignments in PBL models of the class performance (4 M)] 100 ial: Author(s), Title, Edition, Publisher, Year of Publication etc. brts, Websites etc. in the IEEE format)	ode (10M), (Text books,
Evalu Comp T1 T2 End So TA Total Recon Refere	nation Criteria ponents emester Examination nmended Reading materi ence Books, Journals, Repo	Maximum Marks 20 20 35 25 [2 Quiz (6M), Attendance (5M), Assignments in PBL models of the class performance (4 M)] 100 ial: Author(s), Title, Edition, Publisher, Year of Publication etc. orts, Websites etc. in the IEEE format) Schiff, McGraw-Hill Book Co.	ode (10M), (Text books,
Evalu Comp T1 T2 End Sc TA Total Recon Referee 1. 2.	ation Criteria ponents emester Examination nmended Reading materi ence Books, Journals, Repo Quantum Mechanics, L. I. Ouantum Mechanics, E. M.	Maximum Marks 20 20 35 25 [2 Quiz (6M), Attendance (5M), Assignments in PBL models of the class performance (4 M)] 100 ial: Author(s), Title, Edition, Publisher, Year of Publication etc. orts, Websites etc. in the IEEE format) Schiff, McGraw-Hill Book Co. erzbacher, John Wiley and Sons.	ode (10M), (Text books,
Evalu Comp T1 T2 End Sc TA Total Recon Referee 1. 2. 3	ation Criteria ponents emester Examination nmended Reading materi ence Books, Journals, Repo Quantum Mechanics, L. I. Quantum Mechanics, E Me Quantum Mechanics A G	Maximum Marks 20 20 35 25 [2 Quiz (6M), Attendance (5M), Assignments in PBL models of the class performance (4 M)] 100 ial: Author(s), Title, Edition, Publisher, Year of Publication etc. borts, Websites etc. in the IEEE format) Schiff, McGraw-Hill Book Co. erzbacher. John Wiley and Sons. ibatak and S. Lokanathan. Macmillan	ode (10M), (Text books,
Evalu Comp T1 T2 End So TA Total Recon Referee 1. 2. 3. 4	ation Criteria ponents emester Examination nmended Reading materi ence Books, Journals, Repo Quantum Mechanics, L. I. Quantum Mechanics, E M Quantum Mechanics, A. C Quantum Physics: Berkele	Maximum Marks 20 20 35 25 [2 Quiz (6M), Attendance (5M), Assignments in PBL modeling Class performance (4 M)] 100 ial: Author(s), Title, Edition, Publisher, Year of Publication etc. orts, Websites etc. in the IEEE format) Schiff, McGraw-Hill Book Co. erzbacher. John Wiley and Sons. Shatak and S. Lokanathan, Macmillan by Physics Course, Vol. 4, E H Wichman, Tata McGrawhill	ode (10M), (Text books,

5. Feynman Lectures on Physics, Vol-3, Narosa

6. Quantum Mechanics Concepts and Applications, NouredineZettili. John Wiley and Sons.

Project Based Learning: Small group projects based on application of quantum mechanics in the real world will be assigned to students in order to increase their comprehension of the subject and interest in the course. Students will be asked to submit the report of given project and give presentations of the same.

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	19M21PH114	Semester: Odd Semester Month f		er: I Session: 2023-2024 from: July to December	
Course Name	Electronics				
Credits	4		Contact H	lours	3+1
Faculty (Names)	Coordinator	Dr. Bhubesh C	Dr. Bhubesh Chander Joshi		
	Teacher	Dr. Bhubesh C	hander Josh	i	

COURSE	OUTCOMES	COGNITIVE LEVELS
C305-6.1	Recall the basic concepts of electronics devices like diodes, LEDs, BJT,	Remembering (C1)
	FET, MOSFET, oscillators, OP-AMPS, digital GATES, and Flip flops.	
C305-6.2	Explain the various physical parameters involved in designing and	Understanding (C2)
	working of electronic devices & circuits.	
C305-6.3	Solve various network related problems. Develop design competence in	Applying (C3)
	Analog and digital electronics.	
C305-6.4	Develop analytical capability to analyze electronics networks, circuits	Analyzing (C4)
	and components.	

Module	Title of the	Topics in the Module	No. of
No.	Module		Lectures for
			the module
1.	Basic	Network theorems and network analysis; Semiconductors,	10
	electronics	intrinsic and extrinsic semiconductors, Diode theory, forward and	
		reverse-biased junctions, reverse-bias breakdown, load line	
		analysis, diode applications - Limiters, clippers, clampers, voltage	
		multipliers, half wave & full wave rectification, Zener diode,	
		Varactor diode. Transistor fundamentals, transistor	
		configurations, DC operating point, BJT characteristics &	
		parameters, fixed bias, emitter bias with and without emitter	
		resistance, analysis of above circuits and their design, variation of	
		operating point and its stability.	
2.	Amplifier,	Small Signal BJT amplifiers: AC equivalent circuit, hybrid, re	10
	Feedback &	model and their use in amplifier design. Multistage amplifiers,	
	Oscillator	frequency response of basic & compound configuration, Power	
	Circuits	amplifiers: Class A, B, AB, C and D stages, IC output stages.	
		Effect of positive and negative feedbacks, basic feedback	
		topologies & their properties, Analysis of practical feedback	
		amplifiers, Sinusodial Oscillators (RC, LC and Crystal),	
		Multivibrators.	
3.	Operational	Op-Amp Basics, practical Op-Amp circuits, differential and	6
	Amplifiers	common mode operation, Inverting &Non-Inverting Amplifier,	
		differential and cascade amplifier, Op-Amp applications.	
4.	Field-Effect	JFET- current-voltage characteristics, effects in real devices,	2
	Transistors	high-frequency and high-speed issues. Basics of MOSFET.	
	(FET)		

5.	Digital	Decimal, binary, octal, hexadecimal number system and	12
	Electronics	conversion, binary weighted codes, signed numbers, 1s and 2s	
		complement codes Binary arithmetic Positive and negative logic	
		designations OB sate AND sate NOT sate NAND sate NOP	
		designations, OR gate, AND gate, NOT gate, NAND gate, NOR	
		gate, XOR gate, Introduction of digital logic families: Logic	
		levels, propagation delay time, power dissipation fan-out and fan-	
		in, noise margin, logic families (RTL, DTL, TTL etc). Circuits and	
		Boolean identities associated with gates, Boolean algebra- De-	
		Morgans Laws, Sum of products and product of sums expressions,	
		Karnaugh maps, two, three and four variable Karnaugh maps,	
		simplification of expressions, Minterm, Maxterm, deriving SOP	
		and POS expressions from truth tables.	
6.	Combination	Binary adders, half adders, full adders, decoders, multiplexer,	10
	al and	demultiplexer, encoders, ROM and applications, Digital	
	Sequential	comparator, Parity checker and generator, Flip-Flops- RS, JK,	
	Logic	master slave JK, T-type and D-type flip flops, Shift-register and	
		applications, Asynchronous counters and applications. A/D and	
		D/A converters.	
	•	Total number of Lectures	40

Eval	uation Criteria				
Com	ponents	Maximum Marks			
T1		20			
T2		20			
End	Semester Examination	35			
TA		25 [Attendance (05 M), Class Test, Quizzes, etc (06 M),			
		Assignments in PBL mode (10 M), and Internal assessment			
		(04 M)]			
Tota	1	100			
Reco	ommended Reading mater	rial: Author(s), Title, Edition, Publisher, Year of Publication etc. (Textbooks,			
Refe	rence Books, Journals, Rep	orts, Websites etc. in the IEEE format)			
1.	Robert L. Boylestad& Lo	uis Nashelsky, Electronic Devices & Circuit Theory.			
2.	A.P. Malvino, Electronic	Principles, Tata Mcgraw Hill Publications			
3.	William Kleitz, Digital E	lectronics, Prentice Hall International Inc.			
4	Digital Principles and Applications - 5th Edition, Albert Paul Malvino Donald P.Lcach, Tana Mc-Graw-				
4.	Hill Publishing Company	Ltd., New Delhi, 1994			
5.	M. S. Tyagi, Introduction	to Semiconductor Materials and Devices, John Wiley & Sons Inc.			
6.	Michael Shur, Introductio	n to Electronic Devices, John Wiley & Sons Inc., 2000.			
7.	Jacob Millman, and C.C.	Halkias, "Electronic devices and circuits", TMH Publications.			
8	Ben G. Streetman, SolidState Electronic Devices, PHI, 5th Ed, 2001.				
9	Digital Design – 4th editi	on, M.Morris Mano, Prentice Hall, 2006.			
10	Basic Electronics, B.L. T	heraja, S. Chand & Co. Ltd., 2008			

Project Based Learning: Students will have to submit a working project based on p-n diodes, Zener diodes, LEDs, BJT, FET, MOSFET, oscillators, OP-AMPS, digital GATES, and Flip flops. At the end of the semester, students will be asked to submit and present their projects on the basis of which PBL marks will be awarded.

Detailed Syllabus

Lecture-wise Breakup							
Course Code	19M21PH211Semester: OddSemester: ISession: 2023-2024						
	Month from: July to December						
Course Name	Nuclear and Particle	Nuclear and Particle Physics					
Credits	4 Contact Hours 3+1			3+1			
Faculty (Names)	Coordinator	r Dr. Guruprasad Prakash Kadam					
	Teacher	Feacher Dr. Guruprasad Prakash Kadam					

COURSE	OUTCOMES	COGNITIVE LEVELS
C211.1	Recall the basic nuclear properties and laws of nuclear and particle	Remembering (C1)
	physics.	
C211.2	Understand different phenomenon and concepts of nuclear and	Understanding (C2)
	particlephysics along with their interpretation	
C211.3	Apply the concept and principles to solve problems related to	Applying (C3)
	nuclearand particle physics.	
C211.4	Analyze and examine the solutions of the problems of nuclear	Analyzing (C4)
	andparticle physics using physical and mathematical tools	
	involved.	

Module	Title of the	Topics in the Module	No. of
No.	Module		Lectures for
			the module
1.	Nucleus	Basic nuclear properties - size, shape and charge	08
	properties	distribution, nuclear energy levels, nuclear angular	
	and nuclear	momentum, parity, isospin, statistics, and nuclear magnetic	
	models	dipole moment. Binding energy, semi- empirical formula,	
		Liquid drop model, Magic Numbers, Shell model and	
		collective nuclear model.	
2.	Nuclear	Alpha decay, Gamow's theory of alpha decay, Beta decay,	08
	decayand	Fermi's theory of beta decay, Fermi-Kurie plot, decay rates,	
	nuclear	Fermi and Gamow Teller selection rules, Gamma decay,	
	reaction	Angular correlation in successive gammaemissions. Fission	
		and Fusion, Nuclear reactions, reaction mechanism,	
		compound nuclei and direct reactions.	
3.	Nuclear	Classification of fundamental forces, Nature of nuclear	09
	Forces	force, form of nucleon-nucleon potential, charge	
		independence and charge-symmetry of nuclear forces.	
		Deuteron problem – properties of deuteron, ground state of	
		deuteron, excited state, magnetic quadrupole moment of	
		deuteron.	

4.	Elementary	Classification of elementary particles and their quantum	15			
	particles and	nmbes (charge, spin, parity, isospin, strangeness, etc.),				
	relativistic	Gellmann-Nishijima formula, Lepton & Hadrons,				
	kinematics	Classification of hadrons in baryons and mesons, Okubo				
		mass formula for octet and decuplet hadrons, Quark model.				
		Elementary particle symmetries, continuous symmetries,				
		SU(2) and SU(3) groups, Their representations. Discrete				
		symmetries. C, P, and T invariance, CPT theorem.				
		Application of symmetry arguments to particle reactions.				
		Parity non-conservation in weak interaction.				
Total number of Lectures						

Eval	uation Criteria			
Com	ponents	Maximum Marks		
T1		20		
T2		20		
End	Semester Examination	35		
TA		25 [Attendance (05 M), Class Test, Quizzes, etc (06 M),		
		Assignments in PBL mode (10 M), and Internal assessment		
		(04 M)]		
Tota	1	100		
Reco	mmended Reading mater	ial: Author(s), Title, Edition, Publisher, Year of Publication etc. (Textbooks,		
Refe	rence Books, Journals, Rep	orts, Websites etc. in the IEEE format)		
1.	Kenneth S. Krane, Intro	oducing Nuclear Physics, Wiley India (2008).		
2.	D. C. Tayal, Nuclear Ph	ysics, .Himalaya Publication House, Bombay (2015).		
3. Irving Kaplan, Nuclear I		Physics, Narosa Publication (2002).		
4. David Griffiths, Introduc		ction to Elementary Particles, Second Edition, Academic Press (2008).		
5.	S. N. Ghoshal, Nuclear	Physics, S. Chand Limited (2008).		

Project Based Learning: Students may be given to complete a task like identifying common applications to nuclear science, recent developments in nuclear science, etc. The students may be asked tomake presentations on topics like nuclear reactions, nuclear models and their applications. Problems based upon Beta decay, Deuteron problem, Particles interaction may also be included. Students may be taken to research lab where they can visualize the real applications of the subject. The students may also be asked to study the relevant research article

r		1
S.No.	DESCRIPTION	COGNITIVE
		I FVFL (BLOOMS
		TAXONOMY)
C170.1	Recall optics, solid state physics and modern physics principles	Remembering (C1)
	1 1 1 1 1	
	behind the experiments.	
C170.2	Explain the experimental setup and the principles involved behind	Understanding (C2)
	the experiments performed	
	the experiments performed.	
C170.3	Plan the experiment and set the apparatus and take measurements.	Applying (C3)
	1 11	11 5 8 (-)
C170.4	Analyze the data obtained and calculate the error	Analyzing $(C4)$
C1/0.4	Analyze the data obtained and calculate the error.	Anaryzing (C4)
C170.5	Interpret and justify the results.	Evaluating (C5)

Course Name: Laboratory-1 (19M25PH111) **COURSE OUTCOMES:** Upon the completion of this subject, students will be able to

CO-PO MAPPING:

COs	PO1	PO2	PO3	PSO1
C170.1	1	1		1
C170.2	2	2		1
C170.3	3	3	1	1
C170.4	3	3	1	2
C170.5	3	3	1	2

3: Strongly Related 2: Moderately Related 1: Weakly related

Left Blank: Not related

				Detailed Sylla	<u>bus</u>				
		1		Lab-wise Brea	kup				
Course Code		19M25PH1	111 Semester: ODD		D	Semester: 1 st Session: 2023 -2024			
						Month	from:	July to Dece	mber
Course Na	ame	Laborator	y-1	1		I			
Credits			4		Contact I	Iours		8	
Faculty (N	ames)	Coordinat	tor(s)	Navendu Gosv	vami		1		
		Teacher(s) (Alphabeti	cally)	Navendu Goswami, N. K. Sharma, B. C. Joshi, Manoj T			Tripathi,		
COURSE	OUTCO	OMES						COGNITI	VE LEVELS
C170.1	Recall the exp	optics, solid periments.	state phys	sics and modern	physics prin	nciples be	hind	Rememberi	ng (C1)
C170.2	Explai experin	Explain the experimental setup and the principles involved behind the experiments performed.						Understand	ing (C2)
C170.3	Plan th	Plan the experiment and set the apparatus and take measurements. Appl					Applying (Applying (C3)	
C170.4	Analyz	Analyze the data obtained and calculate the error. Ar					Analyzing	(C4)	
C170.5	Interpr	terpret and justify the results.					Evaluating	(C5)	
Module No.	Title o Modu	of the le		Lis	st of Experi	iments		1	СО
1.	Optics 1. Wavelength measurement of Na-source using Michel interferometer.			ichelson	1-5				
			2. Deter	rmination of coh	erence & w	idth of sp	ectral	lines using	
	Michelson interferometer								
		3.To determine the wavelengths of Balmer series in the visible region from hydrogen emission and to determine the Rydberg constant							
2.	Moder	n Physics	4. Meas	surement of critic	cal potential	l using Fra	anck-F	Hertz tube.	1-5
			5. To o using F longitu	bserve the Zeem abry-Perot etalo dinal configurati	an spitting n for norma on.	of the gre ll transver	en mer se and	rcury line	

3	3.	Solid Physics	State	 6. Determination of band gap of semiconductor from temperature dependence of Resistivity using Four Probe Method 7. To study B-H loop for a given sample by CRO 8. Study of Dielectric constant and determination of Curie temperature of ferroelectric ceramics 9. Study of Hall Effect and determination of allied coefficients 10. Study of magneto resistance of given semiconductor material 11. Study of Magnetostriction using Michelson Interferometer 12. Study of electron spin resonance and determination of line width, electron spin, magnetic moment of an electron and electron g factor. 	1-5		
Eval	uation	Criteria					
Com Mid ⁷ End ⁷ D2D Total	ponen Term ` Term `	its Viva (V1) Viva (V2)		Maximum Marks 20 20 60 [PBL (10), Attendance (10), Record file/Auxiliary of Continuous assessment (30)] 100	copy (10) &		
Reco Refe	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)						
1.	Expe	riment hand-o	outs.				

Project based learning: Each student in a group of 3-4 or individually will develop a mini project with the help of various concepts of optics, solid state physics and modern physics. Individually or in a team they will learn how to apply the concepts for problem solving in a meaningful way.