Jaypee Institute of Information Technology

M.TECH Biotechnology

SEMESTER I

Lecture-wise Breakup				
Course Code	17M11BT111	SemesterOddSemesterVII Integrated/ M.TechISession2023 - 2024Month fromAugust - December		
Course Name		Biomolecules and cell communication		
Credits	3	Contact 3 Hours		

<u>Detailed Syllabus</u> Lecture-wise Breakup

Faculty (Names)	Coordinator(s)	Dr. Reema Gabrani
	Teacher(s) (Alphabetically)	Dr. Reema Gabrani

COURSE OUTCOMES		COGNITIVE LEVELS
C110.1	Explain the signal molecules and major cell signaling pathways	Understand Level (C2)
C110.2	Analyze cell signaling pathways in normal and diseased conditions	Analyze Level (C4)
C110.3	Interpret the mechanisms and regulation of cell cycle and cell death	Understand Level (C2)
C110.4	Analyze the therapeutic drug targets for cancer	Analyze Level (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Signal molecules	Cytokines and Hormones, Growth factors, neurotransmitters, extracellular matrix components as signaling molecules; autocrine, paracrine, juxtacrine and endocrine signaling	3
2.	G-protein linked signaling pathways	G Protein-Coupled Receptors, Heterotrimeric G Proteins, Second messengers, Effector enzymes, Mechanism of transduction, Switching Off and Desensitization of Receptors, Visual transduction pathway	8
3.	Signaling mediated by enzyme linked cell surface receptor	Photoreceptor development in Drosphila, Ras to MAP kinase, Phosphoinositide-3- kinase and signaling through insulin	8

		receptor, JAK-STAT pathway, Signal Transduction via Integrins	
4.	Nuclear receptor based signaling	Classification and Structure of Nuclear Receptors, Signaling by steroid hormones, Retinoids, Vitamin D3, and the T3- Hormone, Mechanisms of Transcriptional Regulation by Nuclear Receptors	4
5.	Bacterial Chemotaxis	Two-component signaling pathway, histidine kinase associated receptor, Adaptation, Chemotaxis in pathogenicity, symbiotic associations and biofilm	3
6.	Cell cycle regulation and cell death	Cyclin-CDK variation, Checkpoint signaling, Ubiquitin proteasome proteolytic system, Intrinsic and Extrinsic apoptotic pathways	8
7.	Malfunction of Signaling Pathways and Tumorigenesis	Hallmarks of cancer, Developmental pathways and cancer: Notch signalling from Drosophila to humans, Wnt signalling, Hedgehog pathway; Epigenetic changes in cancer, Signalling pathways as therapeutic targets, Analysis of signalling events via case studies	8
		Total number of Lectures	42
Evaluat	ion Criteria		
Compor	nents	Maximum Marks	
T1 20 20			
T220End Semester Examination35			
TA		25 (Presentation, Assignments) PBL	
Total			

PBL: Students will be given project in groups on "Bench to bedside case study in cell signaling". The project will link the signalling molecule and its cascade to the associated disease and development of therapeutic molecule.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

	B. Gomperts, l. Kramer, P. Tatham "Signal transduction", 2 nd Ed. Academic Press
2.	VW Rodwell, D Bender, K M Botham, P J Kennelly, P A Weil, "Harper's Illustrated Biochemistry", 31st Ed. McGraw-Hill Lange

3.	Alberts, Johnson, Lewis, Morgan, Raff, Roberts and Walter, "Molecular Biology of the Cell" Sixth Edition, Garland Science Publication
4.	Refereed papers from scientific journals for case studies

Detailed Syllabus

Course Code	17M11BT112	Semester Odd (specify Odd/Even)	Semester M.Tech I Session 2023-24
			Month from August- December
Course Name	Molecular Mod	leling and Drug design	
Credits	3	Contact Hours	LTP 3 0 0

Faculty (Names)	Coordinator(s)	Dr Chakresh jain
	Teacher(s) (Alphabetically)	Dr Chakresh Jain, DrNidhi Batra

COURSE OUTCOMES		COGNITIVE LEVELS	
C112.1	Explain macromolecular structures, their Mathematical representation and visualization	Understanding (C2)	
C112.2	Explain structural modeling, simulation and dynamics	Understanding (C2)	
C112.3	Apply computational drug designing and simulation approaches for drug discovery	Applying(C3)	
C112.4	Compare <i>in-silico</i> ligand-target interaction methods	Analyzing (C4)	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Molecular Modeling	Introduction to structure of DNA, protein and RNA. Structure representation and visualization, Coordinate Systems, Potential Energy Surfaces, Software and Hardware for molecular modeling, Tools such as Swiss pdb viewer, Pymol, VMD etc.	5
2.	Quantum Mechanics and Force Fields	Electron methods and molecular orbital calculations, General Features of Molecular mechanics force field, Bond Stretching. Angle Bending. Introduction to Non-bonded	5

	Interactions. Electrostatic Interactions. Van der Waals	

	aluation Criteria	Total number of Lectures	43
6.	Drug designing	Introduction to drug discovery and drug development, Rational approach to drug design, Approaches to lead optimization such as conformation restriction, pharmacophore etc. Designing drugs against enzymes and receptors, Computer Aided Drug Design methods. ADMET, QSAR Tools and databases such as AUTODOCK, MOLEGRO, Drug Bank etc.	16
5.	Structure Prediction	Principles of structure prediction, comparative modeling and protein folding, Comparative and <i>ab-inito</i> modeling, CASP, validations, Projects such as ROSETTA, protein folding at home.	6
4.	Molecular Dynamics and simulations	Molecular Dynamics Simulation Methods. Molecular Dynamics Using Simple Models. Metropolis Method. Monte Carlo methods, Web Based Resources, Databases and tools such as GROMACS, AMBER, & CHARMM.	6
3.	Energy Minimization and computer simulations	Interactions. Hydrogen Bonding in Molecular Mechanics. Force Field Models for the Simulation of Liquid Water. Minimization and Related Methods for exploring the Energy Surface. Non-Derivative method, Minimization methods. Computer Simulation Methods. Simple Thermodynamic Properties and Phase Space. Boundaries. Analyzing the Results of a Simulation and Estimating Errors.	5

Evaluation Criteria

Components Maximum Marks

- T1 20
- T2 20

End Semester Examination 35

TA 25 (Assignment-1, MCQ, Project, Presentation)

Total 100

PBL: Students will be assigned the topic under PBL to explore for molecular visualization, modeling and docking techniques and its applications in drug designing through computational resources (databases/tools) towards drug-disease interaction.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the			
	IEEE format)			
1.	1. Andrew R leach, V.J Gillet, "An introduction to Chemoinformatics" Springer pumodel of publication, 2007			
2.	Gasteiger Johann, "Chemoinformatics A text book "John Wiley, 2008			

3.	Andrew R. Leach, "Molecular Modeling principles and applications" Pearson Education, Second edition, 2001
4.	Refereed papers from scientific journals

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	17M12BT11 6	Semester Odd	Semester X	Session 2023 -20	024
Course Name	Regulatory affairs				
Credits	3	Contact Hours		3	

Faculty (Names)	Coordinator(s)	Dr Shweta Dang
	Teacher(s) (Alphabetically)	Dr Shweta Dang

COURSE (DUTCOMES	COGNITIVE LEVELS
		Understanding (Level 2)
CO120.2	Analyze the guidelines for approvals of new	
CO120.3	Compare innovator and generic pharmaceutical industry with Patent and Non patent exclusivity	Evaluating (Level 5)
CO120.4	Interpret ICH guidelines applicable to drugs and biotechnology based therapeutic products.	Understanding (Level 2)
CO120.5	Assess regulatory approvals via related case studies	Evaluating (Level 5)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1. Introduction To Regulatory agencies		CDSCO, India USFDA, USA EMEA, Europian Union TGA, Australia	2
2.	Introduction To Pharmacopoeias and Monographs	Indian Pharmacopoeia (IP) British Pharmacopoeia (BP) United Sates Pharmacopoeia (USP) International Pharmacopoeia (Int. Ph.) European Pharmacopoeia (Eur. Ph.)	2
3. Safety and efficacy of drugs/biologics, preclinical studies, Clinical phases		Case studies of safety issues in history, Preclinical requirements, acute and chronic toxicity, dose determination, NOAEL, phases of clinical trials (I,II III)	4

4.	Approval pathways for Drugs/ biologic/ biopharmaceuticals in USFDA	FDA,CDER, CBER, IND, NDA, BLA, recalls, Phase IV, filing procedures	7	
5.	Approval pathways for Drugs/ biologic/ biopharmaceuticals in europe	EMEA, market authorization application. Centralized, Decentralized, National, Mutual recognition procedure. CTD, eCTD, Nees Submissions, ICH M4	4	
6.	Approval pathways for Drugs/ biologic/ biopharmaceuticals in India and Japan	Central Drug Standard Control Organization, INDIA, Pharmaceutical and Medical Devices Agency of Japan	3	
7.	Generics and Biosimilars	Hatch Wax man Act (Para I,II,III and IV filings), BPCI act USA, CDSCO guildines, EMEA guidelines, Status of guidelines	6	
8.	Non Patent Exclusivities	Orphan Drug law, Market exclusivity, Pediatrics exclusivity, First to file exclusivity	5	
9. ICH Guidelines for Biologics and Good Clinical Practices		Overview of ICH guidelines, ICH QSEM, ICH Q5 ,Q6,. ICH E6, ICH Q8,9,10	5	
11.	Case Studies	Relevant Case studies	4	
		Total number of Lectures	42	
Evaluati	on Criteria			
Compon		faximum Marks		
T1 20 20				
T220End Semester Examination35				
End Sem TA		35 25 (Class Test, Assignment I and II)		
10	4	25 (Class Test, Assignment I allu II)		

PBL: To find approved drug molecule and find its patent and non patent exclusivity from Regulatory websites

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

	FDA Regulatroy Affairs, David Mantos, Taylor and Francis; 2014 (3 rd edition)	
2.	Biosimilars Regulatory, Clinical, and Biopharmaceutical Development Editors: Gutka, Hiten J., Yang, Harry, Kakar, Shefali , Springer 2018	

06

3.	The	Common	Technical	Document	(CTD),	Internet:
	http://	/www.ich.org/				
	ICH	Guideline: The	Common Tech	nical Document	for the Re	gistration of
4	Pharm	naceuticals for Hui	nan Use: Quality	- M4Q; Quality C	Overall Summa	ary of Module
4.	2,	Module	3:	Qua	ality,	Internet:
	http://	/www.ich.org/Med	iaServer.jser?@_	ID=556&@_MOI	DE=GLB	

Biosensors (17M12BT111) Course Description

Course Code	17M12BT111	Semester Odd	Semester MSc/Integ. Mtech III/VII Session 2023-2024 Month from: July-December
Course Name	Biosensors		
Credits	3	Contact Hours	3

Faculty	Coordinator(s)	Prof.Sudha Srivastava
(Names)	Teacher(s) (Alphabetically)	Prof.Sudha Srivastava

COURSE OUTCOMES		COGNITIVE LEVELS
C01	Explain principle and working of biosensors and	Understand
COI	characterization techniques	Level(C2)
CO2	Evaluate different methods of immobilization and their effect	Evaluate Level
02	on biosensor performance	(C5)
CO3	Analyze performance of a biosensor for disease diagnosis,	Analyze Level (C4)
005	environmental pollution, pathogen quantification	
CO4	Design strategy for fabrication of a given biosensor with high	Create Level (C6)
04	sensitivity and wide detection range	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction:	Sensors and biosensors, definitions, types of sensors, markets, target analytes, glucose and other medical sensors	2
2.	Biosensor Advancements and nanotechnology	First-, second-, third generation biosensors, Nanotechnology and present day biosensors	3
3.	Basic Design Considerations	Calibration, dynamic Range, signal to noise, sensitivity, selectivity, interference.	3
4.	The biological component	Whole cell sensors, enzymes – sensing substrates or inhibitors, antibodies (Mab, Fab). And other binding proteins, oligonucleotides and aptamers.	3

5.	Types of biosensors	Optical biosensors, Electrochemical8biosensors, Piezoelectric biosensor,8Calorimetric biosensors8		
6.	Immobilization method	Non-covalent immobilization - entrapment and multipoint electrostatic attachment. Covalent attachment via thiol, amino and hydroxyl groups. Affinity interactions - avidin/biotin, , complementary oligonucleotides.	4	
7.	Techniques for sensing : Physical and chemicalAbsorbance, fluorescence, chemi/bioluminescence and phosphorescence, Surface Plasmon Resonance (SPR), quartz crystal microbalance, cyclic voltammetry		8	
8.	Sensor stabilization	Storage and operational stability. Polyols, polymers and low Mw compounds as stabilizing agents for drying and long term storage. Stabilization mechanisms.	3	
9.	Applications	Pharmaceutical, agricultural, food safety, biomedical applications, food processing: state of the field, market potential, unique design criteria and needs, current sensors in use.	8	
	•	Total number of Lectures	42	
Evaluat	ion Criteria			
Compor	nents	Maximum Marks		
T1		20		
T2 End Semicircuiter Energia diar		20		
End Semester Examination		35 25 (Class Test Presentation)		
TA Total		25 (Class Test, Presentation) 100		
	udanta would be prese		out	
	1	nting and/or submit report in a group of 3-4, ab on , their fabrication, performance characteriza		

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

ILLL				
1.	Ligler, F.S. and Rowe Taitt, C.A. 2002. Optical Biosensors: Present & Future. Elsevier, The			
	Netherlands. ISBN: 0-444-50974-7.			
2.	Yang, V.C. and T.T. Ngo. 2000. Biosensors and Their Applications. Kluwer			
	Academic/Plenum Publishers, New York, NY. ISBN: 0-306-46087-4.			
3.	Recent research articles			
5.				

Elective for B.tech /M.Tech Dual degree / Specialization course <u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	19M12BT113	Semester: Odd	Semester: DD-IX & M.Tech- I Session 2023
			Month: July – December, 2023
Course Name	Sustainable Ag	griculture	
Credits	3	Contact Hours	3

Faculty	Coordinator(s)	Prof. S Krishna Sundari
(Names)	nes) Teacher(s) (Alphabetically)	Prof. S Krishna Sundari

COUR	RSE OUTCOMES	COGNITIVE LEVELS
CO.1	Interpret various practices in Indian agriculture, risks,	Understand Level
	challenges and status of Indian agriculture	Level II
CO.2	Outline appropriate certification guidelines and Economic	Understand Level
	Rules that apply for organic farming and biotechnological farm	Level II
	inputs	
CO.3	Relate plant nutrition requirements to soil quality and	Apply Level
	agriculture yield impacts	
CO.4	Examine methods to promote soil health, minimize water use,	Analyze Level
	and decrease pollution in farm soils	Level IV
CO.5	Recommend strategies to avoid degradation of soils on a farm	Evaluate Level
	through implementation of sustainable management practices	Level V
	in agriculture	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Don neurin	Major types of soil, Soil structure and composition, problems in soils & Soil life	2
2.	Soil degradation	Soil structural decline, factors contributing to soil degradation, mechanisms of soil degradation	4
3.		Essential requirements for plant growth, micro and macro nutrients, principles of fertilization	4

4.	Synthetic crop chemicals	Types of chemical inputs in modern agriculture, fertilizers, pesticides, insecticides, weedicides, role and mechanism	2
5.	Phytotoxicity	Factors contributing to phyto toxicity, chemical toxicity, soil pollutants, soil antagonists	4
6.	Pest and diseases in Plants	Major categories of plant diseases and associated crop issues, Pest control & Preventative measures, integrated pest management	4
7.	Sustainable ways of farming	Different methods for Sustainable ways of farming, processes involved, advantages, strategy for implementation, Introduction to Land Management programs	6
8.	Organic farming	Natural farming, Safe Cultivation techniques, Cover crops, biofertilizers, biopesticides, bioinoculants, zero chemical input agriculture	5
9.	Tools for Sustainable farming	Irrigation systems & sustainability, Weed Management, cropping seasonal variations, plantation times, crop rotation, energy farming, restoring marginal lands and brown field	3
10	Agriculture economics	Economic principles of agriculture, Financial sustainability & planning, Integrated farmer community dynamics	3
11	Agriculture regulatory matters	Certification & guidelines for crop inputs (organic, biological inputs, hormones and others), IPR in agriculture, Role of Regulatory bodies	3
		Total number of Lectures	42
Evaluati	on Criteria		
TA	ents ester Examination	Maximum Marks 20 20 35 25 ()	
TA Total		25 () 100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. Organic Agriculture - A Global Perspective, Editors: Paul Kristiansen, Acram Taji and John Reganold, CSIRO PUBLISHING, Australia

2.	Sustainable Agriculture– Beyond Organic Farming, editor: Sean Clark, MDPI, Basel, Switzerland,
3.	Sustainable Agriculture, From Common Principles to Common Practice, Edited by Fritz J. Häni, László Pintér and Hans R. Herren, Published by the International Institute for Sustainable Development, ISBN 978-1-894784-05-4
4.	Technical reports of USDA, UNDP, ICAR
5.	Articles from Journals such as: Journal of Sustainable Agriculture; Agriculture, ecosystem & Environment; Agroecology and Sustainable Food Systems

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	17M12BT118	Semester Odd (MSc Micobiology 111)	Semester . III. Session 2022- 2023 Month from July – Dec 2023
Course Name	Product Develo	relopment in Biotechnology	
Credits	3	Contact Hours	3

Faculty	Coordinator(s)	Prof. Neeraj Wadhwa
(Names)	Teacher(s) (Alphabetically)	Prof. Neeraj Wadhwa

COU	RSE OUTCOMES	COGNITIVE LEVELS
CO1	1 Outline various processes relevant for Biobusiness Understand Level (C2)	
CO2	Compare marketing techniques and related ethics	Apply Level (C2)
CO3	Select appropriate technology for the production of Biological products	Understand Level (C3)
CO4	Explain financial, regulatory, health policy aspects for biobased industries	Understand Level (C2)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Biotechnology Industries overview	Biotechnology as a function of science and business , Functional units Company structure and functions Emerging technology and technical convergences issues	5
2.	Business in the context of biotechnology Entrepreneurship-	Science/development, the idea and its development , Plant tissue culture lab- equipment- glasswares chemical requiremen construction,techniquesin culturing and export abroad, Vermitechnology, Mushroom cultivation, single cell protein, Biofertilizer technology-production, Textile processing, leather treatment, leather industry set up Detergent industry, bakery, Unit processes in food industry	14
3.	Product development	a. Production of commercially important primary metabolites like organic acids, amino acids and alcohol & Production processes for various	12

		 classes of secondary metabolites: Antibiotics, Vitamins and Steroids. b.Production of Industrial Enzymes, Biopesticides, Biofertilizers, Biopreservatives, Biopolymers, Pulp and Paper , SINGLE CELL PROTEIN & Mushroom culture, Bioremediation. Bioprocess strategies in Plant Cell organ culture and Animal Cell culture. 	
4.	Biobusiness plans	Concerns and oppurtunities, Environmental clearances requirement from government, Quality checks and validation certificates, Packaging concerns, Policy and regulatory concerns,	6
5. Bioremediation Bioethics and legal issues		Product development, Sustainability, Environmental concerns of product and their waste.	5
		Total number of Lectures	42
Evaluatio	on Criteria		
Compone	ents N	Maximum Marks	
T1		20	
T2		20	
		35	
TA		25 (Assignment)	
Total		100	

	ommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (t books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Jordan, J. F. (2014). Innovation, Commercialization, and Start-Ups in Life Sciences. London: CRC Press.
2.	Desai, V. (2009). The Dynamics of Entrepreneurial Development and Management. New Delhi: Himalaya Pub. House.
3.	Cruger, Wulf and Anneliese Crueger, "Biotechnology: A Textbook of Industrial Microbiology", 2 nd Edition, Panima Publishing, 2000
4	Karthikeyan,S and Arthur Ruf." Biobusiness"MJP Publication Chennai India 2009

PHYTOTHERAPEUTICS AND PHARMACOLOGY

Subject Code	17M12BT119	Semester: ODD	Semester: I Session: 2023-2024 Month from: July - Dec
Subject Name	PHYTOTHERA	PEUTICS AND PH	ARMACOLOGY
Credits	3	Contact Hours	3

Faculty	Coordinator(s)	1.	Professor. Vibha Rani
(Names)	Teacher(s)	1.	Professor. Vibha Rani
	(Alphabetically)		

COURSE	OUTCOMES	COGNITIVE LEVELS	
CO130.1	CO130.1 Analyze the existing biotechnological techniques to develop plant-based therapeutics		
CO130.2	Evaluate the classes, synthesis and structure functional relationship of Phyto molecules	Evaluating (C5)	
CO130.3	Explain the therapeutic applications of phytochemicals	Understanding (C2)	
CO130.4	Identify the current aspects of phytomedicines on toxicity and clinical trials	Applying (C3)	
CO130.5	Case studies to analyze Ayurpharmaco-epidemiology	Analyzing (C4)	
CO130.6	Use of bioinformatics tools and approaches to predict the molecular function of novel bioactive molecules	Creating (C6)	

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
and market ana		Concepts of Phototherapeutics, Trend and market analysis, Global herbal medicine market, Herbal Sector in India	3
2	Medicinal Plants Metabolites	Introduction to metabolites, Secondary metabolites, properties and beneficial aspects.	3
3	Isolation technique extraction procedure	Pharmacology Approaches in Phototherapeutics, Bioactive guided discovery process Isolation from medicinal plants. Isolation from aromatic plants. Recants advancements in extraction	4

4	Characterization	Qualitative and quantitative Analysis	4
-	technique	Gas Chromatography	т
		High Performance Liquid	
		Chromatography: (HPLC)	
		High Performance Thin Layer	
		Chromatography: (HPTLC)	
5	Structure functional	Bioinformatics approach in	4
	relationship	predicting structure functional	
		relationship	
		Mechanism of Action	
		Unidentified Therapeutic Intakes	
		Factors that Affect Metabolism	
6	Therapeutic	Free radicals and antioxidants	8
	Application	Plants used in Metabolic disorder	
		Plants used in respiratory system	
		Plants used in COVID Pandemic	
		Plants used with antimicrobial	
		activity.	
		Plants used with neurodegenerative	
		disorders	
		Plants used in cardiovascular system.	
7	Toxicity Issue and	Current aspects of phytomedicine on	6
	Clinical Trials	toxicity and clinical trials	
8	Case studies	Success stories, research-based case	8
0		studies related to phototherapeutics	
9	Potential risks	Discussion	2
	associated and future		
	aspects	Total number of Lectures	42
Evalua	tion Criteria		
Compo		laximum Marks	
T1		20	
T2		20	
		35	
TA		25 (Class Test-1, Assignment-1&2, PBL, C	Case studies
1 0 0 0			
1, 2& 3 Total		100	

Project based learning: Each student will opt a human health issues and diseases. To make subject application based, the students will analyze uncharacterized Indian medicinal herbs and will explore their therapeutic potential and also perform market research. Various phototherapeutics concepts will be discussed by students. Students would explain the critical disease targets and mechanism of actions of selected herbs by *in silico* methods. Understanding the concepts would enhances the student's knowledge and motivation for herbal drug discovery and its continuously growing market which will help their employability into various biotechnology and health sector.

Pub	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Papers, Reports, Websites etc. in the IEEE format)		
1.	I.Plant Bioactive and Drug Discovery: Principles, Practice, and Perspectives. Valdir Cechinel-Filho (Ed.). 2012 John Wiley & Sons, Inc.		
2.	Phototherapeutics (Recent Progress in Medicinal Plants). S. K. Sharma, J. N. Govil, V. K. Sing. 2005. Studium Press.		
3.	Phytotherapies: Efficacy, Safety, and Regulation. Iqbal Ramzan (Ed.) 2015 John Wiley & Sons, Inc.		
4.	Recent research articles and reviews related to each module.		

BIOTECHNIQUES LAB-I

Course Code	17M15BT111	Semester Odd (Specify Odd/Even)			
				Month	from July- December
Course Name	Biotechniques La	ques Lab-I			
Credits	3		Contact	Hours	6

Faculty	Coordinator(s)	Dr. Vibha Rani
(Names)	Teacher(s) (Alphabetically)	Dr. Priyanka Tyagi, Dr. Sujata Mohanty, Dr. Vibha Rani

COURSE OUTCOMES		COGNITIVE LEVELS
C111.1	Apply basic analytical techniques in biotechnology	Apply Level (C3)
C111.2	Develop skills in molecular biology techniques	Apply Level (C3)
C111.3	Examine and analyse gene expression	Analyze (Level C4)
C111.4	Make use of purification techniques for natural products	Apply Level (C3)

Module No.	Title of the Module	List of Experiments	CO
1.	Analytical techniques	To explore drug-protein interactions	2
2.	Molecular biology techniques	Cloning strategy: Screening of recombinants: isolate recombinant plasmid DNA from bacterial cells; Restriction enzyme digestion, separate and visualize DNA bands by agarose gel electrophoresis	4
3.	Gene expression techniques	Designing primers for amplification of gene of interest by PCR, PCR amplification, analyze PCR products; Analysis of a recombinant protein by polyacrylamide gel electrophoresis	3
4.	Purification techniques	To obtain antimicrobial compound from bacterial culture; to purify the antimicrobial compound by column chromatography; use of bioactivity-guided fractionation to analyze and quantify the compounds	3
		Total	12
Evaluati	on Criteria		•

Components	Maximum Marks
Mid-Term Viva	20
Day-to-Day (Lab record,	
attendance, performance)	60
Final Viva	20
Total	100
Desired Desert Learning, T	the students learn column abromatography molecular higlagy and

Project Based Learning: The students learn column chromatography, molecular biology, and analytical techniques and analyze gene expression which is required for the Biotech industry.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication, etc. Textbooks, Reference Books, Journals, Reports, Websites, etc. in the IEEE format) Introduction to Biotechnology, Laboratory Manual: 1 http://www.austincc.edu/awheeler/Files/BIOL%201414%20Fall%202011/BIOL1414 Lab %20Manual_Fall%202011.pdf Frederick M. Ausubo, Roger Brent, Robert E. Kingston, David D. Moore, J.G. Seidman, John 2 A. Smith, Kevin Struhl (eds.) Current Protocols in Molecular Biology. John Wiley & Sons Inc; . ringbou edition (December 4, 2003) Molecular Biology web book- http://www.web-books.com/MoBio/ 3 S. V. S. Rana, Biotechniques Theory and Practice. Rastogi Publications 2008. 4 Methods standardized in lab 5

Cours e Code	18M11G E111	Semester Odd	Semester I Session 2023-2024
Cours e Name	Research Methodology & Intellectual Property Rights		
Credits	2	Contact Hours	2-0-0

Faculty	Coordinator(s)	
(Names)	Teacher(s) (Alphabetically)	

COURS	E OUTCOMES:	COGNITIV E LEVELS	
After pur will be at	suing the above-mentioned course, the students ble to:		
C101. 1	explain the basic concepts and types of research	Understanding Level (C2)	
C101. 2	define a research problem, its formulation, methodologies and analyze research related information	Analyzing Level (C4)	
C101. 3	explain research ethics, understand IPR, patents and their filing related to their innovative works.	Understanding Level (C2)	
C101. 4	explain and analyze the statistical data and apply the relevant test of hypothesis in their research problems	Analyzing Level (C4)	

Modul e No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Research	What is research? Types of research. What is not research? How to read a Journal paper?	3

2.	Report writing	How to write report? Use of Mendeley in report writing. How to write a research paper? Problem identification and solving.	4
3.	Ethics, IPR and Research methodologi es	Research ethics, patents, intellectual property rights, plagiarism regulation 2018. Steps in research process and common methodologies to attempt solution to research paper.	8
4.	Basics of statistics and probability distributions	Basic statistical concepts. Handling of raw data, Some common probability distributions.	7
5.	Test of hypothesis and regression analysis	Hypothesis testing. Parametric and non- parametric data, Introduction to regression analysis.	8
lectures)		ended discussion, guided self-study,	
	nts 30 (Quiz, nts)		

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

Stuart Melville and Wayne Goddard, Research Methodology: An Introduction for Science & Engineering Students, Kenwyn, South Africa: Juta & Co. Ltd., 1996.

Kothari, C.R., Research Methodology: Methods and Techniques, New Age International, New Delhi, 2009.

Kumar, Ranjit, Research Methodology: A Step-by-Step Guide for Beginners, 2nd Edition, Sage Publications Ltd., 2005.

Ramappa, T., Intellectual Property Rights Under WTO, S. Chand, New Delhi, 2008.

Wayne Goddard and Stuart Melville, Research Methodology: An Introduction, Kenwyn, South Africa: Juta & Co, 2001.