JAYPEE INSTITUTE OF INFORMATION TECHNOLOGY

M.Sc. MICROBIOLOGY (II SEMESTER)

2023-2024

Department of Biotechnology

Programme Name: MSc (Microbiology), MSc (Environment)

Course Name & Code: Environmental Microbiology; 19M21BT114

Course: Environmental Microbiology Code: 19M21BT114 (4 credits) Revised Course Outcomes

Course Outcomes (Cos): Upon completion of the course, students would be able to:

	E OUTCOMES: Upon completion of the course,	COGNITIVE
students	will be able to	LEVELS
CO.1	1	
	contribution to various environments	(C2)
CO.2	Identify application potential of microbes in	Apply Level (C3)
	different biotechnology sectors	
CO.3	Make use of research advances in microbe-based	Apply Level (C3)
	technologies concerning microbial ecology and	
	environmental balance	
CO.4	Analyse different aspects of polluted environments	Analyze Level
	and suggest methods of detoxification	(C4)

Brief Outline:

Fundamentals of Environmental microbiology, its significance, contribution of microbes to nutrient cycling and other ecosystem functions, microbial associations and belowground soil networks, microbes in aquatic and different extreme environments and their adaptations, microbes for remediation and detoxification, research studies of microbes applied for decontaminating environmental pollutants and other applications, regulatory measures in microbial application.

Detailed Syllabus

Course Code	19M21BT114	Semester:	Semester: II	Session : 2024
			Month from:	Jan-June, 2024
Course Name	se Name Environmental Microbiology			
Credits	3-1	-0-4	Contact Hours	s 4

Faculty	Coordinator (s)			
(Names)	Teacher(s)1. Prof. Krishna Sundari(Alphabetically)			
Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module	
1.	General concept of Microbes, Microbial ecology & Environment	Concept of Microbes with respect to Environment & Ecosystem, Soil as an environment for diverse microorganisms, Understand the biogeochemical cycles, The global carbon cycle and microorganisms, carbon cycle and the green house effect, diversity of microbes, microbial communities in environment	6	
2.	Microbial interactions in Environment	Microbial interactions - mutualism, commensalism, amensalism, synergism, parasitism, predation and competition, Microbial interactions with plants-phyllosphere, mycorrhizae, rhizosphere and symbiotic association in root nodules.	4	
3.	Microbes in aquatic environments	Aquatic habitats - freshwater - lakes, ponds and streams; marine habitats - estuaries, deep sea, hydrothermal vents, saltpans and microbes acclimatised, Factors affecting microbial growth in aquatic environments, coral reefs and mangroves and their microbial communities; zonation – food chain and food web.	3	

Lecture-Wise Breakup

4.	Microbes under extreme environments	Categories of extremophiles and extremotrophs, Distribution of extremophiles and extremotrophs, Types and diversity of thermophiles, psychrophiles, halophiles, alkaliphiles, acidophiles and barophiles.	3
5.	Microbes for improved soil health	Classification of soil, physical and chemical properties of soil, structure of soil, Soil microbes and fertility of soil, Soil microbes and fertility of soil. Biotechnology of nitrogen fixation, Biofertilizers VAM, Rhizobium, Frankia, Azospirillum, Azotobacter, cyanobacteria and Azolla and Biopesticides	6
6.	Microbiology of waste water	Principle microbial groups in waste water environment, their role, Treatment of liquid wastes –primary, secondary, tertiary treatment; anaerobic (methanogenesis), aerobic, trickling, activated sludge, oxidation pond.	4
7.	Microbes in remediation and biomass utilization	Bioremediation types (<i>in situ / ex situ</i>) and methods, Treatment of solid wastes -composting, vermiform composting, saccharification, gasification, treatment of liquid wastes, urban wastes, industrial wastes, microbes for utilization of starch and sugars in biomass, biogas and biofuels	6
8.	Microbes for degradation of xenobiotics and decontaminating polluted sites	Microbe assisted degradation of xenobiotics, Degrees of biodegradation, Factors needed for biodegradation and adaptation, solutions from Biodegradation, Biodegradable and non – biodegradable organic matter, toxicity testing, Bistimulation, Bioaggumentation, Biosorption, Biosensors, Bioindicators, microbes to address heavy metal pollution	4
9.	Microbial technologies for environmental applications	Application of microbes in various industries (paper & pulp, tanneries, distilleries, food processing & diary industry) microbes for treatment of Oil spills, radioactive spillage Biofilters, Biofuels, Bioplastics, Biofilms in industry & environment, Case studies	4
10.	Regulations for use of microbes	Microbes and biosafety levels, regulations for application of microbes in research and environment	2
Total nu	mber of Lectures		42
Evaluat	ion Criteria		
Compor	nents	Maximum Marks	
T1 T2		20	
T2		20	

End Semester Examination	35
ТА	25
Total	100

Reco	mmended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc.
(Tex	t books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Prescott's Microbiology, 10th Edition, Eds. Joanne Willey, Linda Sherwood and
1.	Christopher J. Woolverton, 2017
2.	Environmental Microbiology, 3rd Edition, Eds: Ian Pepper, Charles Gerba, Terry
2.	Gentry, Academic Press, 2014
3.	Environmental Science: toward a Sustainable Future. Richard T Wright, Dorothy F
5.	Boorse, 12 th Edition, Pearson India education services pvt Ltd., 2015
	Basic Environmental technology: water supply, waste management and pollution control,
4.	Jerry A nathanson, Richard a Schneider, sixth edition, Pearson India education services
	pvt Ltd.,, 2017
5.	Research articles from refereed journals.

Course Description Detailed Syllabus

MSc (Microbiology)

Enzyme & Bioprocess Technology (Sem II)

Course Code	19M21BT117	Semester: Ev	ven	Semeste	r: 1 st	Session:	2023-24
				Month f	rom:	Jan to	June
Course Name	Enzyme & Bioprocess Technology						
Credits	3-1-()	Contac Hours	:t		4	

COURS	E OUTCOMES: Upon completion of the course, students will	COGNITIVE
be able to)	LEVELS
C120.1	Explain biochemical reactions and structure-function	Understand Level
	relationships of different classes of enzymes	(C2)
C120.2	Apply production and optimization methods for industrial	Apply Level
	products	(C3)
C120.3	Apply microbial growth kinetics and bioreactors for	Apply Level
	production	(C3)
C120.4	Examine applications of enzyme technology and bioreactor	Analyze Level
	engineering.	(C4)

Faculty	Coordinator(s) Dr. Garima Mathur			
(Names)	Teacher(s)	1. Dr. Garima Mathur	1. Dr. Garima Mathur		
	(Alphabetical	<i>z</i>) 2. Prof. Sudha Srivastava			
Module	Subtitle of	Topics in the module	No. of		
No.	the Module		Lectu		
			res		
1.	Introduction and Scope	Enzymes - Nomenclature and Classification, Biological Roles, Enzyme activity, Specific activity and turn over number, Coenzymes and cofactors, Isozymes, Synzymes scope of enzymes in medicine, detergents, food and beverage, textiles and leather. Significance of Acetyl choline esterase, creatine kinase, trypsin, amylase, cellulase;	5		
2	Structure function relationships	3D- Structure of Enzymes, Active Site, Modifiers of Enzyme Activity, Enzyme Activators, Enzyme Inhibitors, structure-function relationships in model proteins like ribonuclease A, Triose phosphate isomerase, chymotrypsin etc.; Protein folding: folding of single and multiple-domain proteins, Anfinsen's Dogma, Levinthal paradox, cooperativity in protein folding			

3.	Production	Sources of industrial enzymes (natural & recombinant),	6
	of Enzymes	Screening for new and improved enzymes, different	
		methods of extraction, isolation and purification of	
		commercially important enzymes, large-scale industrial	
		enzyme production and downstream processing	
4.	Techniques	Immobilization - Definition, Advantages & Disadvantages,	4
	of enzyme	Types of Immobilization Techniques - Physical and	
	Immobilizati	chemical - adsorption, matrix entrapment, encapsulation,	
	on	cross-linking, covalent binding with examples; Overview of	
		applications of immobilized enzyme systems, Enzyme	
		electrodes and their application as biosensors in industry,	
		health care, food and environment.	
5.	Microbial	Different growth stages - lag, log and stationary phase;	7
	Growth	Exponential growth model, substrate and product	
	kinetics	stoichiometry, multi-substrate growth kinetics, maintenance	
		energy	
6.	Bioreactors	Ideal and non-ideal culture system, types of Bioreactors-	5
		Brief introduction to design and operations;	
7.	Energy and	Energy and mass balance in biochemical processes;	4
	Mass	Aeration and agitation, volumetric mass transfer coefficient	
	Transfer		
8.	Microbial	Primary and secondary metabolite, Processes for production	4
	fermentation	of alcohol, lactate, butyrate, butanol-acetone fermentation	
		Total number of Lectures	42

Reco	pmmended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc.
(Tex	t books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Lehninger Principles of Biochemistry, 7 th Edition; Freeman, WH & Company, 2017
2.	Biochemistry, 9th Edition by Jeremy Berg, Lubert Stryer, John Tymoczko, Gregory
	Gatto; WH Freeman, 2019
3.	Bioprocess Engineering: Basic Concepts; 3 rd Edition by Matthew DeLisa, Fikret Kargi,
	Michael L. Shuler; Prentice Hall; 2017
4.	Methods in Enzymology series by Academic Press
5.	Principles of Fermentation Technology, 3 rd Edition by Stanbury PF, Whitaker A and Hall
	SJ, Elsevier, 2017
6.	"Bioprocess Engineering Principles", Doran, P.M., Academic Press

Microbiology Lab –II (19M25BT112) AY 2023-24

Course coordinator: Dr. Pooja Choudhary

Faculty members: Dr. Sonam Chawla, Dr. Ankisha Vijay, Dr. Pooja Choudhary, Dr. Garima Mathur, Dr. Chakresh Jain

СО	Course Outcome	Cognitive Level
CO1	Application of microorganisms for environmental	C3 Apply level
	remediation and production of industrially important	
	enzymes and metabolites	
CO2	Apply immunological methods to understand microbial	C3 Apply level
	diseases	
CO3	Examine the antimicrobial agents from medicinal plants	C4 Analyze level
CO4	Compare pathogenic microbial genomes using	C4 Analyze level
	computational tools	

S.No	List of Experiment	Week
1	Environmental Microbiology	Week 1-3
(a)	Determination of enzyme activities as pollution indicator (e.g. esterase, lipase,	
	dehydrogenases) in contaminated soil and water samples.	
(b)	Total coliform bacteria count in contaminated water samples from different	
	locations	
(c)	Evaluating of health of agriculture soil (pH, Organic carbon, phosphorous, nitrate-nitrogen)	
2	Enzyme & Bioprocess Technology	Week 4-6
(a)	Production of industrial enzymes using microbial cultures	
(b)	Enzyme kinetics	
(c)	Optimization of enzyme yield	
3	Immunology & Immunotechnology	Week 7-9
(a)	Differential WBC counts	
(b)	Virtual Lab: Removal of spleen and thymus from mice and isolation of	
	lymphocytes	
(c)	Antigen- antibody interactions	
4	Medical Microbiology	Week 10-12
(a)	Antimicrobial activities of various medicinal plant extracts using disc diffusion	
	method	
(b)	Determination of IC50 of various plant extracts	
(c)	Comparative analysis of pathogenic microbial genomes using computation tools	

Project based learning: Each student will choose a suitable computational tool to compare the genome sequence of microorganisms and make a report on the same.

Evaluation Criteria Maximum Marks Components Mid Sem 20 End Sem 20 60 (lab test, PBL, lab records) Day to day Total 100

Detailed Syllabus

Liebture while Dreakup			
Course Code	19M21BT118	F118 Semester Even Semester M.Sc. Microbiology II	
			Session 2023 -2024
			Month from Jan-June
Course Name	Medical Microbiology		
Credits	4	Contact Hours	4

Lecture-wise	Breakup
--------------	---------

Faculty (Names)	Coordinator(s)	Dr. Vibha Gupta
	Teacher(s) (Alphabetically)	Prof. Reema Gabrani, Dr. Vibha Gupta

COU	RSE OUTCOMES	COGNITIVE LEVELS
C01	Explain basic concepts of epidemiology	Understand Level (C2)
CO2	Examine the association between microbes, immunity and human health	Apply Level (C3)
CO3	Apply classical and advanced laboratory techniques for disease diagnosis	Apply Level (C3)
CO4	Relate mechanisms of antimicrobial agents and emerging resistance.	Analyse Level (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Introduction, Human microbiome and health	2
2.	Diseases caused by microbes:	Diseases caused by bacteria, virus, fungus and parasites; host susceptibility; mechanism of their pathogenesis; Specific Virulence Factors	8
3.	Diagnostic methods	Microscopy, molecular and immunological diagnostics	11

4.	Antimicrobial agents and disease control	Targeting bacterial biological components; Drugs that Inhibit other Biochemical Targets; Bacterial Resistance; Combinations of Antimicrobial Agents; Gram positive and gram negative bacteria, virus (DNA and RNA) specific case studies; antimicrobial vaccines;	10
5.	<u>Specific Acquired</u> <u>Immunity</u> against pathogens	General Concepts; Basis of Acquired Resistance; Primary vs Opportunistic Pathogens; Protective Antigens; Immune Mechanisms; Preventive Immunity	8
6.	Global health and epidemiology	Chain of Infection; Epidemiologic Methods; Epidemic Investigation	3
		Total number of Lectures	42
Evaluatio	on Criteria		
Compone	ents	Maximum Marks	
T1		20	
T2		20	
End Semester Examination		35	
TA Total		25 (Presentation, Assignments, PBL) 100	

PBL: Students individually or in a group of 2 will be engaged in following a case study or researching a disease caused by any microbe. They will inspect the epidemiology and pathogenesis, and identify different techniques for its diagnosis (molecular and immunological methods) as well as emerging therapeutics in treating microbial infection.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	S. Baron, "Medical Microbiology"; https://www.ncbi.nlm.nih.gov/books/NBK7627/		
2.	P. Murray, K. Rosenthal, M. Pfaller, "Medical Microbiology", 8th Ed., Elsevier, 2015		
3.	FH Kayser, KA Bienz, J Eckert, "Medical Microbiology", Thieme, 2011		
4.	Selected Research articles		

Detailed Syllabus

Lecture-wise Breakup

Course Code	19M11BT116	Semester : Even	Semester M.Sc. Microbiology/Env Biotechnology Session 2023 -2024 Month from January - June
Subject Name	Immunology and Immun	otechnology	
Credits	4	Contact Hours	4
Faculty	Coordinator(s)	Dr. Rachana	
(Names)	Teacher(s) (Alphabetically)	Dr. Rachana, Dr. Shalini Mani	
CO116.1	Explain the role of the Imm health and diseases.	nune system in human	(C2) Understand level
CO116.2	Utilie immunological techniques for diagnosis of various diseases.		(C3) Apply level
CO116.3	Make use of antibody engineering for various applications.		(C3) Apply level
CO116.4	Analyse advanced Immunological principles and technology for clinical purposes.		(C4) Analyze level

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Component of Immune system	Cells and organs of immune system, Innate immunity, adaptive immunity, B cell receptor, T cell receptor	6
2.	Regulation of immune response	Antigen presentation, MHC molecules, Cytokines, Complement systems	4
3	Diseases related to immune system	Autoimmune diseases, hypersensitivity reactions, Immune deficiency, cancer, infectious diseases.	5
4	Organ and tissue transplantation	HLA typing, graft rejection, graft acceptance, case studies.	3
5	Antibody engineering	Antibody diversity, Polyclonal antibody, Hybridoma Technology and its application, Humanized antibody, Phage display technology.	6

6	Immunotechnology	Theory, cross reactivity, precipitation reactions, agglutination reactions, ABO blood grouping, Ouchterlony, Western blotting, Elispot, immunofluorescence (IHC, FACS), ELISA, Kits for diseases. RIA	10
7	Vaccine Technology and its application	Adjuvants, live, attenuated, killed, inactivated, toxoids, recombinants, sub unit, conjugate and DNA vaccines	4
8	Immunotherapy	Passive immunization, activation of NK cells, T Cells, generation of antibody	4
		Total number of Lectures	42

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

Immunology (3 ^a edition)
Janus Kuby W.H. Freeman and company
Essentials of Immunogy
Ivan- Roit; 6 th edition (1988); Blackwell Publ
Antibodies A laboratory Manual
Harlow and David Lane, Old spring Harbor Laboratory
Immunology – A Short Course,
Richard Coico, et al. 5th Ed., Wiley – Liss, 2003.
Immunology, 4th Ed
Richard Hyde. Lippincott Wilkins & Wilkins, 2000.
Microbiology & Immunology Online.
Richard Hunt. Univ South Carolina, School of Medicine,
http://pathmicro.med.sc.edu/book/immunol-sta.htm
Cellular and Molecular Immunology 9th Edition
Abul Abbas Andrew H. Lichtman Shiv Pillai, Elsevier, 2019
https://www.worldcat.org/title/cellular-and-molecular-
immunology/oclc/1108702033?referer=di&ht=edition

Agriculture Biotechnology Integrated M.Tech, M.Tech, MSc (Microbio), MSc (Environment) (Elective Course)<u></u> <u>Detailed Syllabus</u>

Brief Outline: National Agriculture Policy, Food security, Agriculture and climate change, formulations for Plant Growth Promotion and Combating Phytopathogens, Formulation Technology of Biocontrol Agents, Laws & Regulations governing Bioformulations, Quality control in agriculture and agri-products

Course Code	22M12BT111	Semester:	Semester: II, IV, Month from: Ja	Session: Even 2024 an to June
Course	Agriculture Biotechnology			
Name				
Credits	3-0-	3	Contact Hours	3
	OUTCOMES: Upon co	ompletion of the	course,	COGNITIVE LEVELS
	vill be able to	<u> </u>		
CO.1	Infer applications of agriculture biotechnology for improved quality and productivity.			Understand Level, C2
CO.2	Relate Physiological & Molecular mechanisms of plant, its genome and extra chromosomal genetic information.			Apply Level, C3
CO.3	Apply different agricultural & biotechnological methods to meet National food security goals.		Apply Level, C3	
CO.4	Connect advances in agriculture biotechnology to quality control, transgenics, regulations & agriculture policies.Analyze Level, C4			Analyze Level, C4

Faculty	Coordinator(s)		
(Names)	Teacher(s) (Alphabetically)	1. Prof. Krishna Sundari	
Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Overview of agriculture biotechnology & NAP	Introduction and significance of biotechnology in agriculture, Climate change and its impact on agriculture, National agriculture Policy, food security, SDG & agriculture, quality control in agriculture & GAP	6
2.	Plant growth & Physiology	Fundamentals of Plant growth, Photosynthesis and genes involved, symbiotic and non-symbiotic nitrogen fixation, Role of lectins, nod genes, nif	6

		genes, Structure, function and regulation of nitrogenase, Leg-haemoglobin, Nodulins,	
		Molecular aspects of regulation and enhancement of nitrogen fixation, Synthesis and metabolism of hormones and plant signaling	
3.	Plant Genome & Plant Genetic resources	Genome size and sequence components, Nuclear, cytoplasmic/organelle genomes and significance, conservation of plant genetic resources, seedbanks, germplasm conservation and cryopreservation	4
4.	Agriculture Biotechnology & methods for improved production	Concept of plasticity in plant development, Tissue culture, hybridization, Marker Assisted Breeding, Molecular markers for plant genotyping and germplasm analysis commercial application of plant tissue culture	8
5.	Plant genetic engineering & applications	Agrobacterium-plant interaction; Virulence; Ti and Ri plasmids; Opines and their significance; T-DNA transfer; Disarming the Ti plasmid, Agrobacterium-mediated gene delivery, Cointegrate and binary vectors and their utility, Chloroplast transformation: advantages, vectors systems of plant genetic engineering, Enhancing crop yield and crop quality improvement through Genetic Engineering for quality improvement: Seed storage proteins; essential amino acids, Vitamins and minerals, heterologous protein production in transgenic plants for agriculture, industry and pharmaceuticals uses, biodegradable plastics	12
6.	Agriculture policies & Regulations for GM and non-GM crops	Provisions on crop genetic resources in Indian Biodiversity Act, CBD and Cartagena protocol, Agricultural biodiversity; International Treaty on Plant Genetic Resources for Food and Agriculture (PGRFA), Global efforts for management of crop genetic resources; Strategies on PVFR and Biodiversity Acts; Impact of GE crops on Biodiversity	6
Total num	ber of Lectures		42
Evaluation	n Criteria		1

Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
ТА	25
Total	100

Rec	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc.				
(Te	(Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Genetics, Agriculture, and Biotechnology, Walter Suza, Iowa State University				
1.	Donald Lee, Published by University of Nebraska-Lincoln, Copyright Year: 2021				
2	Textbook of Agriculture Biotechnology, Nag Ahindra, Second Edition, PHI publications,				
Ζ.	2018				
2	Plant Biotechnology and Agriculture-Prospects for the 21st Century, Eds. Arie Altman,				
3	Paul Hasegawa, Elsevier publications, 2 nd Edition, 2020.				
4.	Research articles from refereed journals.				

<u>Detailed</u> Syllabus

Course Code		Semester Even (specify Odd/Even)	Semester IV Session 2023-24 Month from: Jan-June
Course Name	Name Microbiomics		
Credits	3	Contact Hours	3

Faculty (Names)	Coordinator(s)	1. Dr. Chakresh KumarJain	
	Teacher(s) (Alphabetically)	Dr Chakresh Kumar Jain	

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Overview of microbiomics	Fundamentals microbiomics and applications, Which functions are expressed in the microbiome - transcriptomics	7
2.	Microbiomic theory of life	human 'commensal' microbiota, Human microbiome project, soil or water microbiota, their features and role in living system	5
3.	Microbiome diversity	 16s rRNA profiling analysis, Shotgun Metagenomics, andinternal Transcribed spacer (ITS), internal Transcribed region analysis, Taxonomic classification, Diversityanalysis 	8
4.	Sequencing methods	Extracting whole genomes from the microbiome - genome sequencing through PacBio, Deep sequencing, shot gun sequencing and data analysis using computational tools and pipelines, such as MG-RAST server etc.	10
5.	Human Microbiome	Nexus of Food, Agriculture, Human Nutrition, and Gut Microbiome	7

6	Environment and Microbiome	Environmental influences on bacterial genomes: bacterial epigenome and itsanalysis	4		
7.	Applications and tools	Human microbiota and infectious diseases, liver diseases, gastrointestinal malignancy etc.	5		
Total number of Lectures					
Evaluatio	Evaluation Criteria				
Compone	ents MaximumMarks				
T1 20					
T2 20	T2 20				
EndSemester Examination 35					
TA 25 (Assignments 1, 2 / MCQ/PBL,Attendance)					
Total 100	Total 100				

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Papers, Reports, Websites etc. in the IEEE format)
1. Vassilios fanos, "Metagenomics and microbiomics", 2016, pp 144, Academic press. ISBN 9780128053058
2. <u>Pierre Baldi and Søren Brunak</u> "Bioinformatics The Machine Learning Approach", February 2001, The MIT Press, Cambridge, London
3. Research papers and online resources