JAYPEE INSTITUTE OF INFORMATION TECHNOLOGY

M.Sc. ENVIRONMENTAL BIOTECHNOLOGY (III SEMESTER)

2023-2024

Environmental Biotechnology Lab-III

Subject Code: 20M35BT211

	Course Code	20M35BT211	Semester Odd	Sess	emester III sion 2021-22 m July to December
(Course Name		Environmental	l Biotechnology Lab	-III
	Credits	0-0-4	Contact Hours		8
	COURSE O	OUTCOMES Stude	ents will be able to		COGNITIVE LEVELS
	CO1 Implement various bioinformatics tools for environmental Biotechnology			Level III (Apply)	
	CO2	Analyze Bi	ochemical waste treat	Level IV (Analyze)	
	CO3 Analyze bacterial transformation techniques		Level IV (Analyze)		
	CO4	Evaluate o	cloning technique and recombinants	d screening of Level V (Evaluate)	

Module No.	Title of the Module	List of Experiments
1.	Bacterial Transformation	Competent cells preparation and Transformation of plasmid DNA of into <i>E. coli</i> , calculation of transformation efficiency
2.	Cloning and screening of recombinants	Restriction digestion of vector and insert; ligation of gene of interest in standard plasmid vectors; Transformation; Screening of recombinants
3.	Waste Management	Field visit to ETP: Primary, chemical and biological treatment; calculation of kinetics of microbial degradation of waste; bioreactors; pollution control case study
4.	Bioinformatics	Application of bioinformatics tools and resources in environmental biotechnology

Evaluation Criteria Components Maximum Marks Mid Term Exam 20 End Term Exam 20 Day to Day 60 Total 100

PBL: Group of students can prepare reports on various bioinformatics tools applications in Environmental Biotechnology. Students can also work on the calculations related to transformation efficiency.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

Shah, Shachi, 2022, MEVL-013 Environment Science Lab Course-3, Indira Gandhi National Open University, New Delhi, http://egyankosh.ac.in//handle/123456789/87882.

Singh DP, Singh SK and DP Dwivedi, (2005). Environmental Microbiology and Biotechnology. New Age International (P) Limited, Publishers.

Thakur IS, (2012). Environmental Biotechnology: Basic Concepts and Applications (2nd Second Edition). I. K. International Publishing Housing, New Delhi.

Alexander N Glazer and Hiroshi Nikaido, (2007). Microbial Biotechnology: Fundamentals of Applied Microbiology (2nd Edition).

Environmental	Policy.	Ethics	& 1	Legislation
Lin , in onnionea		Linnes	~	acgioration.

Course Code		20M31E	BT211	Semester Odd (specify Odd/)		Semester Session Month	2023	-2024 July to December	
Course Na	ame	Environ	mental Poli	cy, Ethics & Le	gislation				
Credits			3		Contact I	Hours		3	
Faculty (N	Names)	Coordi	nator(s)	Prof. Indira P.	Sarethy				
		Teacher (Alphab	r(s) oetically)	Dr. Ankish Vi	jay, Prof. In	dira P. Sa	rethy		
COURSE	OUTCO	OMES						COGNITIVE	LEVELS
CO1	Explai	n and inte	rpret ethics					Understand (C	C2)
CO2	Correla	ate ethics	with respect	with respect to environment Apply (Apply (C3)	ply (C3)	
CO3	Evalua countri		imental policy and legislation as applied in different Evaluate (C5)						
CO4	CO4 Analyze comme			cialization with respect to environment and policy Analyze (C4)					
Module No.	Title o Modul		Topics in t	he Module					No. of Lectures for the module
1.	Introd	uction	What is eth Environme	ics? What is the nt	environme	nt? Ethics	and th	ne	2 [CO1]
2.	Enviro vs ethi	onment ics		ntal problems as and world view					3 [CO1]
3.	Enviro al Just	onment tice		fair treatment fo ation; enforceme					5 [CO2]
4.	ric	opocent nmenta s	tragedies of and species	growth, pollutic f the (unregulate ism, diets, Bioc y, species preser	ed) common entrism and	s. : Huma biocentri	ns, otł c indiv	ner animals, vidualism.	4 [CO2]

5.	International Environment al Policies	Introducing laws to protect the environment; major environmental laws globally and in India; Nature of Environmental Policies; Stockholm Conference(1972); Rio Conference (UNCED)(1992);	4 [CO3]				
6.	International Agreements and Treaties	Merits of the Conference (Agenda 21); Failures of the Conference. Concept of agreement and treaty; Need of international agreements and treaties; Johanesburg treaty; GAAT and Environment; CITES; Montreal Protocol	5 [CO3]				
7.	National Policy on Environment	tional licy onNational Committee on Environment and Planning (NCEP); Tiwari committee; Establishment of MoEF;					
8.	Constitutional provisions for Environment al Protection	Historical Background of constitutional provisions; Article 14, 15, 19, 21, 32, 39, 47, Article 48(A), 49, 51A(g) as fundamental duties of citizen and directive principles of state policy, Article 243, 243(G) and (W); Art. 246, 248 and other articles related to Environment; Writ provisions for the protection of environment.	5 [CO3, CO4]				
9.	National Environment al Legislation	The Water(Prevention and Control of Pollution) Act, 1974; The Air (Prevention and Control of Pollution), Act, 1981; The Environment (Protection) Act, 1986; Aims, objectives and major contents and Sec. 12 of Mining Act, 1952. The Forest (conservation) Act, 1980; The Wildlife (Protection) Act, 1972; The Biodiversity (Protection) Act, 2002; Aims, objectives and major contents with amendments.	5 [CO3, CO4]				
10.	Environment al Legislation related to CRZ & PIL	Concept and need of public interest litigation; Jurisdiction of High Courts and Supreme Court; Need of CRZ rules for regulation the activities in coastal zone; Statutory provisions in IPC and CrPC; Common law remedies for environmental safeguard; Environment related provisions in Public Liability Insurance Act.	5 [CO3, CO4]				
		Total number of Lectures	42				
Proj (CO3	6	nalysis of a case study involving environmental legislation violation					
Com T1 T2	uation Criteria ponents Semester Examination	Maximum Marks 20 20 35 25 (Assignments 1, 2. Presentation 1) 100					
		terial: Author(s), Title, Edition, Publisher, Year of Publication etc. (Tex Reports, Websites etc. in the IEEE format)	t books,				
1.	Declaration of: The Sto https://www.ipcc.ch/ap	ockholm Conference, Rio, Rio+5 and Rio+10: ops/njlite/srex/njlite_download.php?id=6471; /development/devagenda/sustainable.shtml					

2. Anti-Pollution

Actshttp://www.lawsindia.com/Industrial%20Law/list%20of%20Acts/Pollutioin%20act%20 list/POLLUTION%20ACTS%20%20LIST.htm

3.	Constitution of India (referred articles from Part-III, Part-IV and Part-IV- A) <u>https://www.mea.gov.in/Images/pdf1/Part3.pdf;</u> https://www.mea.gov.in/Images/pdf1/Part4.pdf
4.	P. Leelakrishnan, Environmental Law in India, Lexis Nexis; 4th edition (26 July 2016)

Biosensors(17M12BT111) Course Description

Course Code	17M12BT111	Semester Odd Semester MSc/Integ. Mtech III/VII		
			Session 2023-2024	
			Month from: July-December	
Course Name	Biosensors			
Credits	3	Contact Hours	3	

Faculty (Names)	Coordinator(s)	Prof.Sudha Srivastava
	Teacher(s) (Alphabetically)	Prof.Sudha Srivastava

COU	RSE OUTCOMES	COGNITIVE LEVELS
CO1	Explain principle and working of biosensors and characterization techniques	Understand Level(C2)
CO2	Evaluate different methods of immobilization and their effect on biosensor performance	Evaluate Level (C5)
CO3	Analyze performance of a biosensor for disease diagnosis, environmental pollution, pathogen quantification	Analyze Level (C4)
CO4	Design strategy for fabrication of a given biosensor with high sensitivity and wide detection range	Create Level (C6)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction:	Sensors and biosensors, definitions, types of sensors, markets, target analytes, glucose and other medical sensors	2
2.	Biosensor Advancements and nanotechnology	First-, second-, third generation biosensors, Nanotechnology and present day biosensors	3
3.	Basic Design Considerations	Calibration, dynamic Range, signal to noise, sensitivity, selectivity, interference.	3

4.	The biological component	Whole cell sensors, enzymes – sensing substrates or inhibitors, antibodies (Mab, Fab). And other binding proteins, oligonucleotides and aptamers.	3	
5.	Types of biosensors	Optical biosensors, Electrochemical biosensors, Piezoelectric biosensor, Calorimetric biosensors	8	
6.	Immobilization method	Non-covalent immobilization - entrapment and multipoint electrostatic attachment. Covalent attachment via thiol, amino and hydroxyl groups. Affinity interactions - avidin/biotin, , complementary oligonucleotides.	4	
7.	Techniques for sensing : Physical and chemical	Absorbance, fluorescence, chemi/bioluminescence and phosphorescence, Surface Plasmon Resonance (SPR), quartz crystal microbalance, cyclic voltammetry	8	
8.	Sensor stabilization	Storage and operational stability. Polyols, polymers and low Mw compounds as stabilizing agents for drying and long term storage. Stabilization mechanisms.	3	
9.	Applications	Pharmaceutical, agricultural, food safety, biomedical applications, food processing: state of the field, market potential, unique design criteria and needs, current sensors in use.	8	
		Total number of Lectures	42	
Evaluati	ion Criteria	I		
Compon	ients	Maximum Marks		
T1		20		
T2		20		
End Sem TA	ester Examination	35 25 (Close Test Presentation)		
1 4		25 (Class Test, Presentation) 100		
Total				

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	Ligler, F.S. and Rowe Taitt, C.A. 2002. Optical Biosensors: Present & Future. Elsevier, The Netherlands. ISBN: 0-444-50974-7.					
2.	Yang, V.C. and T.T. Ngo. 2000. Biosensors and Their Applications. Kluwer Academic/Plenum Publishers, New York, NY. ISBN: 0-306-46087-4.					
3.	Recent research articles					

19M21BT212 Se		Semeste	r: Odd	Semester: III Session : 2023 -2024 Month from: July to December			
Reco	ombi	nant DNA	Technolog	ду			
3			Contact	Hours	3		
Facu (Nan		Coord	inator(s)	1. Dr.	Pooja Choudhary		
	,	Teach (Alpha	er(s) betically)		r. Pooja Choudhary r. Shalini Mani		
			COURS	E OUTC	COMES	С	OGNITIVE LEVELS
C230 1	C230. Summarize the fundamental concepts of RDT, cloning vectors, prokaryotic vs. eukaryotic hosts and expression systems				Understand Level, C2		
C230 2	 C230. Illustrate different methods of genomic libraries and molecu and animals 		of gene transfer, cloning, Apply level , cular tools for microbes, plants		ply level, C3		
C230 3	0.	-	RDT tools, nent, Medic	-	es and its applications in agriculture	Ana	llyze level, C4
C230 4	0.		mportance a	ance as well as ethical and biosafety issues genics		Understand Level, C2	
Mod ule No.	Subtitle of the Module Topics in the module		No. of Lectures for the module				
1. Introduction Basic Concepts of Recombinant DNA to of RDT, pioneering discoveries and sign tailoring microbes, model plants and an context		ering discoveries and significanc	e of	n 4			
Vectors and Hosts forenzymes; C prokaryotic		nes; Clor ryotic and rial, funga	cymes and other DNA modifying ning vectors, expression vectors, d eukaryotic expression systems al and plant hosts for cloning, m	,	6 f		

3.	Recombinant DNA	Basic techniques of gene manipulation, - Gel electrophoresis, DNA transformation techniques, Cloning	6
	Technology	of PCR products, Construction of Genomic and cDNA libraries, Screening Libraries with Gene Probes, Screening Expression Libraries, Positional Gene Cloning, Subtractive cloning, Functional cloning	
4.	Molecular tools supporting RDT	PCR, RT-PCR, Blotting techniques, Sequencing methods, NGS, Gene editing, Mutagenesis, Gene expression techniques, Regulation of gene expression, microRNAs, Microarrays	4
5.	Methods & Applications of Plant Genetic engineering	Molecular Biology of DNA transfer in Plant through <i>Agrobacterium tumefaciens</i> , methods for artificial gene transfer, Applications in agriculture such as golden rice, BT Cotton, Nif and Nod gene clusters and Nitrogen fixing, etc.	5
6.	RDT for Environmental Biotechnology	Environmental Applications: biodegradation and bioremediation Energy based applications: Biogas, biodiesel and bioethanol production by microorganisms. Biotechnological applications. Biotechnological applications.	5
7.	RDT in Medicine & Therapeutics	Production of recombinant vaccines and antibiotics, phytopharming, microbes as cell factories for production of therapeutic molecules, insulin and other major discoveries, gene therapy	6
8.	Animal cloning & Issues	Transferring gene in animal oocytes, eggs embryos and specific animals tissues, Application of rDNA technology in animal cell lines, tailoring model animals, Controlling the expression of transgene in time and space, case studies exposing risks of animal cloning	4
9.	Ethics & Biosafety in RDT	Ethical issues, Biosafety guidelines and regulations	2
Tota	l number of Lectur	res	42

PBL Component (C230.3): Students assigned topics in group of 2 to 3 members. A review of literature-based project on latest advancements in Recombinant DNA Technology and genetic engineering. PBL involves real-time learning based on published scientific papers, involves constructive

analytical thinking and peer learning. Students submit their report/e-poster/PowerPoint presentation of their review work.

Evaluation Criteria:

Components Maximum Marks

T1 20 T2 20 End Semester Examination 35 TA 25

Total 100

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	Genes XII: Benjamin Lewin, 2016					
2.	Molecular Biology of the Gene, Seventh Edition: James D. Watson, Tania A. Baker, Stephen P. Bell, Alexander Gann, Michael Levine, Richard Losick, 2004 Microbial Biotechnology: Progress and Trends, FarshadDarvishiHarzevili, Hongzhang Chen, First edition CRC Press/Taylor & Francis Group, 2017					
3	Molecular biotechnology : principles and applications of recombinant DNA / Bernard R. Glick and Jack J. Pasternak, Cheryl L. Patten. ASM Press					
4.	Gene Cloning and DNA Analysis: An Introduction, Seventh Edition-T. A. Brown, John Wiley & Sons Ltd. 2016					
5.	Microbial Biotechnology: Progress and Trends, FarshadDarvishiHarzevili, Hongzhang Chen, First edition CRC Press/Taylor & Francis Group, 2014					

Detailed Syllabus

Lecture-wise Breakup							
Course Code	ourse Code 16B1NBT733 Semester ODD Semester III Session 2023-2024						
		(specify Odd/Even)	Month from July-December				
Course Name	Waste Management						
Credits	Credits 4 Contact Hours 3-1						

Faculty (Names)	Coordinator(s)	Dr. Garima Mathur
	Teacher(s) (Alphabetically)	Dr. Garima Mathur

COURS	COGNITIVE LEVELS	
C432- 3.1	Explain the fundamental concepts related to waste management	Understand level (C2)
C432- 3.2	Apply basic environmental legislation and Environmental Management System for effective waste management	Apply level (C3)
C432- 3.3	Analyze the emerging waste management technologies for sustainable solution	Analyze level (C4)
C432- 3.4	Assess the environmental, social and economic aspects in integrated waste management	Evaluate level (C5)

Module No.	Title of the Module	COs	Topics in the Module	No. of Lectures for the module
1.	An introduction to Waste management	CO1	Definition of waste, sources, general categories of waste in context of Indian legislations, waste generation aspects, waste collection, storage and transport	4
2.	Biological and chemical waste treatment technologies	CO1, CO2, CO3	Waste incineration and waste to energy (WTE), fundamentals of thermal processing – combustion, pyrolysis, gasification, energy recovery system, aerobic and anaerobic digestion, composting, bio gasification and mechanical biological treatment of wastes.	7
3.	Waste handling and disposal	CO2	Health considerations in the context of operation of facilities, handling of materials and impact of outputs on the environment, Landfills: Design and operation including: site selection, Geo-environmental investigations, engineered sites, liners and covers, management of landfill leachate and the mining of old landfills, gas recovery and control, including utilization of recovered gas (energy), and landfill monitoring and reclamation, Natural attenuation process and	7

			its mechanisms, integrated waste	
			management	
4.	Source Reduction	CO2,	Unit operations for separation and	8
	and waste	CO3	processing, size reduction, separation,	
	Recycling		density separation.	
5.	Product recovery	CO2,	Recovery of Biological Conversion	5
	and biorefinery	CO3,	Products: Composts and Biogas, recovery	
		CO4	technologies to deliver added-value	
			products	
6.	Hazardous Waste:	CO2,	Specific waste streams including healthcare	6
	Management and	CO3,	(biomedical wastes), food wastes, mineral	
	Treatment	CO4	and mining wastes, electronic waste,	
			hazardous wastes and producer responsibility	
			wastes.	
7.	Legal aspects and	CO2	Regulatory requirements for identification,	3
	policy guidelines		characterization and disposal of hazardous,	
			nonhazardous and domestic wastes,	
			International treaties addressing waste issues	
8	Environmental and	CO2,	Economics of the on-site v/s off site waste	2
	Economic	CO4	management options	
	considerations of			
	waste management			
			Total number of Lectures	42
Evaluat	tion Criteria		· · · · · · · · · · · · · · · · · · ·	
Compo	nents	Maxim	um Marks	
T1		20		
T2		20		
End Semester Examination		35		
ТА		25 (As	signment 1, Assignment 2, PROJECT BASED L	EARNING)
Total		100		,

Project based learning: After gaining knowledge about various aspects of waste management, students will be taking up few successful case studies on effective waste management and government policies and regulations addressing the growing concern associated with waste management.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text				
books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
Waste from wealth- Banwari Lal, Priyangshu M Sarma, The Energy and Resources Institute, 3 rd				
Edition, 2017. Textbook of solid waste management, Khan, Iqbal H, Ahsan, Naved, CBS Publishers & Distributor				
2014 Environmental Waste Management, Ram Chandra, CRC Press, 1 st Edition, 2015				

COURSE: SUSTAINABLE AGRICULTURE CODE: 19M12BT113 Elective for B.tech/M.Tech Dual degree / Specialization course

Course Code	19M12BT113	Semester: Odd	Semester: DD-IX & M.Tech-I Session 2023
			Month: July – December, 2023
Course Name	Sustainable Agr	iculture	
Credits	3	Contact Hours	3

Faculty (Names)	Coordinator(s)	Prof. S Krishna Sundari
	Teacher(s) (Alphabetically)	Prof. S Krishna Sundari

COUR	COURSE OUTCOMES			
CO.1	Interpret various practices in Indian agriculture, risks, challenges and status of Indian agriculture	Understand Level Level II		
CO.2	Outline appropriate certification guidelines and Economic Rules that apply for organic farming and biotechnological farm inputs	Understand Level Level II		
CO.3	Relate plant nutrition requirements to soil quality and agriculture yield impacts	Apply Level		
CO.4	Examine methods to promote soil health, minimize water use, and decrease pollution in farm soils	Analyze Level Level IV		
CO.5	Recommend strategies to avoid degradation of soils on a farm through implementation of sustainable management practices in agriculture	Evaluate Level Level V		

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Soil health	Major types of soil, Soil structure and composition, problems in soils & Soil life	2
2.	Soil degradation	Soil structural decline, factors contributing to soil degradation, mechanisms of soil degradation	4
3.	Plant nutrition	Essential requirements for plant growth, micro and macro nutrients, principles of fertilization	4

4.	Synthetic crop chemicals	Types of chemical inputs in modern agriculture, fertilizers, pesticides, insecticides, weedicides, role and mechanism	2
5.	Phytotoxicity	Factors contributing to phyto toxicity, chemical toxicity, soil pollutants, soil antagonists	4
6.	Pest and diseases in Plants	Major categories of plant diseases and associated crop issues, Pest control & Preventative measures, integrated pest management	4
7.	Sustainable ways of farming	Different methods for Sustainable ways of farming, processes involved, advantages, strategy for implementation, Introduction to Land Management programs	6
8.	Organic farming	Natural farming, Safe Cultivation techniques, Cover crops, biofertilizers, biopesticides, bioinoculants, zero chemical input agriculture	5
9.	Tools for Sustainable farming	Irrigation systems & sustainability, Weed Management, cropping seasonal variations, plantation times, crop rotation, energy farming, restoring marginal lands and brown field	3
10	Agriculture economics	Economic principles of agriculture, Financial sustainability & planning, Integrated farmer community dynamics	3
11	Agriculture regulatory matters	Certification & guidelines for crop inputs (organic, biological inputs, hormones and others), IPR in agriculture, Role of Regulatory bodies	3
		Total number of Lectures	42
Evaluat	tion Criteria		
Compo	nents	Maximum Marks	
T1		20	
T2	_	20	
	mester Examination	35	
TA		25 ()	
Total		100	

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	1. Organic Agriculture - A Global Perspective, Editors: Paul Kristiansen, Acram Taji and John Reganold, CSIRO PUBLISHING, Australia		
2.	2. Sustainable Agriculture– Beyond Organic Farming, editor: Sean Clark, MDPI, Basel, Switzerland,		
3.	Sustainable Agriculture, From Common Principles to Common Practice, Edited by Fritz J. Häni, László Pintér and Hans R. Herren, Published by the International Institute for Sustainable Development, ISBN 978-1-894784-05-4		

4.	Technical reports of USDA, UNDP, ICAR
	Articles from Journals such as: Journal of Sustainable Agriculture; Agriculture, ecosystem &
э.	Environment; Agroecology and Sustainable Food Systems

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	17M12BT118	Semester Odd (MSc Micobiology 111)	Semester . III. Session 2023- 2024 Month from July – Dec 2023
Course Name	Product Devel	opment in Biotechnology	
Credits	3	Contact Hours	3

Faculty (Names)	Coordinator(s)	Prof. Neeraj Wadhwa
	Teacher(s) (Alphabetically)	Prof. Neeraj Wadhwa

COURSE OUTCOMES		COGNITIVE LEVELS
CO1	Outline various processes relevant for Biobusiness	Understand Level (C2)
CO2	Compare marketing techniques and related ethics	Apply Level (C2)
CO3	Select appropriate technology for the production of Biological products	Understand Level (C3)
CO4	Explain financial, regulatory, health policy aspects for biobased industries	Understand Level (C2)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Biotechnology Industries overview	Biotechnology as a function of science and business , Functional units Company structure and functions Emerging technology and technical convergences issues	5
2.	Business in the context of biotechnology Entrepreneurship-	Science/development, the idea and its development , Plant tissue culture lab-equipment- glasswares chemical requiremen construction,techniquesin culturing and export abroad, Vermitechnology, Mushroom cultivation, single cell protein, Biofertilizer technology-production, Textile processing, leather treatment, leather industry set up Detergent industry, bakery, Unit processes in food industry	14

3.	Product development	 a. Production of commercially important primary metabolites like organic acids, amino acids and alcohol & Production processes for various classes of secondary metabolites: Antibiotics, Vitamins and Steroids. b.Production of Industrial Enzymes, Biopesticides, Biofertilizers, Biopreservatives, Biopolymers, Pulp and Paper, SINGLE CELL PROTEIN & Mushroom culture, Bioremediation. Bioprocess strategies in Plant Cell organ culture and Animal Cell culture. 	12
4.	Biobusiness plans	Concerns and oppurtunities, Environmental clearances requirement from government, Quality checks and validation certificates, Packaging concerns, Policy and regulatory concerns,	6
5.	Bioremediation Bioethics and legal issues	Product development, Sustainability, Environmental concerns of product and their waste.	5
		Total number of Lectures	42
Evaluati	Evaluation Criteria		
		Aaximum Marks	
-		20	
T220End Semester Examination35			
		25 (Assignment)	
Total		100	

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	Jordan, J. F. (2014). Innovation, Commercialization, and Start-Ups in Life Sciences. London: CRC Press.		
2.	Desai, V. (2009). The Dynamics of Entrepreneurial Development and Management. New Delhi: Himalaya Pub. House.		
3.	Cruger,Wulf and Anneliese Crueger, "Biotechnology: A Textbook of Industrial Microbiology", 2 nd Edition, Panima Publishing, 2000		
4	Karthikeyan,S and Arthur Ruf." Biobusiness" MJP Publication Chennai India 2009		