JAYPEE INSTITUTE OF INFORMATION TECHNOLOGY

M.Sc. MICROBIOLOGY (III SEMESTER)

2023-2024

<u>Detailed Syllabus</u> Lecture-wise Breakup

Course Code	17M12BT116	Semester Odd	Semeste	er 3 Session	2023 -2024
Course Name	Regulatory affairs		<u> </u>		
Credits	3	Cor	ntact Hours		3

Faculty (Names)	Coordinator(s)	Dr Shweta Dang
	Teacher(s) (Alphabetically)	Dr Shweta Dang

COURSE	OUTCOMES	COGNITIVE LEVELS
CO120.1	Explain regulatory markets and agencies; preclinical and clinical trials	Understanding (Level 2)
CO120.2	Analyze the guidelines for approvals of new drugs/biologics	Analyzing (Level 4)
CO120.3	Compare innovator and generic pharmaceutical industry with Patent and Non patent exclusivity	Evaluating (Level 5)
CO120.4	Interpret ICH guidelines applicable to drugs and biotechnology based therapeutic products.	Understanding (Level 2)
CO120.5	Assess regulatory approvals via related case studies	Evaluating (Level 5)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction To Regulatory agencies	CDSCO, India USFDA, USA EMEA, Europian Union TGA, Australia	2
2.	Introduction To Pharmacopoeias and Monographs	Indian Pharmacopoeia (IP) British Pharmacopoeia (BP) United Sates Pharmacopoeia (USP) International Pharmacopoeia (Int. Ph.) European Pharmacopoeia (Eur. Ph.)	2
3.	Safety and efficacy of drugs/biologics, preclinical studies, Clinical phases	Case studies of safety issues in history, Preclinical requirements, acute and chronic toxicity, dose determination, NOAEL, phases of clinical trials (I,II III)	4
4.	Approval pathways for Drugs/ biologic/ biopharmaceuticals in USFDA	FDA,CDER, CBER, IND, NDA, BLA, recalls, Phase IV, filing procedures	7
5.	Approval pathways for Drugs/ biologic/ biopharmaceuticals in europe	EMEA, market authorization application. Centralized, Decentralized, National, Mutual recognition procedure. CTD, eCTD, Nees Submissions, ICH M4	4

6.	Approval pathways for Drugs/ biologic/ biopharmaceuticals in India and Japan	Central Drug Standard Control Organization, INDIA, Pharmaceutical and Medical Devices Agency of Japan	3
7.	Generics and Biosimilars	Hatch Wax man Act (Para I,II,III and IV filings), BPCI act USA, CDSCO guildines, EMEA guidelines, Status of guidelines	6
8.	Non Patent Exclusivities	Orphan Drug law, Market exclusivity, Pediatrics exclusivity, First to file exclusivity	5
9.	ICH Guidelines for Biologics and Good Clinical Practices	Overview of ICH guidelines, ICH QSEM, ICH Q5 ,Q6,. ICH E6, ICH Q8,9,10	5
11.	Case Studies	Relevant Case studies	4
		Total number of Lectures	42

Evaluation Criteria

Components Maximum Marks

T1 20 T2 20 End Semester Examination 35

TA 25 (Class Test, Assignment I and II)

Total 100

PBL: To find approved drug molecule and find its patent and non patent exclusivity from Regulatory websites

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) FDA Regulatroy Affairs, David Mantos, Taylor and Francis; 2014 (3rd edition) 1. Biosimilars Regulatory, Clinical, and Biopharmaceutical Development Editors: Gutka, 2. Hiten J., Yang, Harry, Kakar, Shefali, Springer 2018 The Common Technical Document (CTD), Internet: **3.** http://www.ich.org/ ICH Guideline: The Common Technical Document for the Registration of Pharmaceuticals for Human Use: Quality - M4Q; Quality Overall Summary of Module 2, Module 3: Quality, Internet: 4. http://www.ich.org/MediaServer.jser?@_ID=556&@_MODE=GLB

Subject 19M21BT212 Semester: Odd		Semester: III Session: 2023 -2024 Month from: July to December							
Subject	Subject Name Recombinant DNA Technology								
Credit	s		3			Contact Hours	3		
Fact	-	Coor	dinat	or(s)	1. Dr	. Pooja Choudhary			
) Te			1. Dr. Pooja Choudhary 2. Dr. Shalini Mani					
			(COURS	E OUTC	COMES			GNITIVE EVELS
C230	•				Underst	and Level, C2			
C230 2).		rate different methods of gene transfer, cloning, genomic ries and molecular tools for microbes, plants and animals			y level, C3			
C230).				chniques se and agr	and its applications in iculture		Analy	ze level, C4
C230 4		Identify to transg		ance as	e as well as ethical and biosafety issues related		Understand Level, C2		
Mo dule No.	dule Module		Topic	es in the	e module			No. of Lectures for the module	
origin signif			c Concepts of Recombinant DNA technology, n of RDT, pioneering discoveries and ficance of tailoring microbes, model plants animals in present context		4				
2. Enzymes, Vectors and Hosts for Cloning		enzyr proka bacter	nes; Claryotic a rial, fun	nzymes and other I oning vectors, exp nd eukaryotic exp gal and plant hosts ene transfer	ression vect ression syst	tors,	6		

3.	Recombinant DNA	Basic techniques of gene manipulation, - Gel electrophoresis, DNA transformation techniques, Cloning	6
	Technology	of PCR products, Construction of Genomic and cDNA libraries, Screening Libraries with Gene Probes, Screening Expression Libraries, Positional Gene Cloning, Subtractive cloning, Functional cloning	
4.	Molecular tools supporting RDT	PCR, RT-PCR, Blotting techniques, Sequencing methods, NGS, Gene editing, Mutagenesis, Gene expression techniques, Regulation of gene expression, microRNAs, Microarrays	4
5.	Methods & Applications of Plant Genetic engineering	Molecular Biology of DNA transfer in Plant through <i>Agrobacterium tumefaciens</i> , methods for artificial gene transfer, Applications in agriculture such as golden rice, BT Cotton, Nif and Nod gene clusters and Nitrogen fixing, etc.	5
6.	RDT for Environment al Biotechnology	Environmental Applications: biodegradation and bioremediation Energy based applications: Biogas, biodiesel and bioethanol production by microorganisms. Biotechnological applications. Biotechnological applications.	5
7.	RDT in Medicine & Therapeutics	Production of recombinant vaccines and antibiotics, phytopharming, microbes as cell factories for production of therapeutic molecules, insulin and other major discoveries, gene therapy	6
8.	Animal cloning & Issues	Transferring gene in animal oocytes, eggs embryos and specific animals tissues, Application of rDNA technology in animal cell lines, tailoring model animals, Controlling the expression of transgene in time and space, case studies exposing risks of animal cloning	4
9.	Ethics & Biosafety in RDT	Ethical issues, Biosafety guidelines and regulations	2
Total	number of Lect	ures	42

PBL Component (C230.3): Students assigned topics in group of 2 to 3 members. A review of literature-based project on latest advancements in Recombinant DNA Technology and

genetic engineering. PBL involves real-time learning based on published scientific papers, involves constructive analytical thinking and peer learning. Students submit their report/e-poster/PowerPoint presentation of their review work.

Evaluation Criteria:

Components Maximum Marks

T1 20

T2 20

End Semester Examination 35

TA 25

Total 100

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	Genes XII: Benjamin Lewin, 2016					
2.	Molecular Biology of the Gene, Seventh Edition: James D. Watson, Tania A. Baker, Stephen P. Bell, Alexander Gann, Michael Levine, Richard Losick, 2004 Microbial Biotechnology: Progress and Trends, FarshadDarvishiHarzevili, Hongzhang Chen, First edition CRC Press/Taylor & Francis Group, 2017					
3	Molecular biotechnology: principles and applications of recombinant DNA / Bernard R. Glick and Jack J. Pasternak, Cheryl L. Patten. ASM Press					
4.	Gene Cloning and DNA Analysis: An Introduction, Seventh Edition-T. A. Brown, John Wiley & Sons Ltd. 2016					
5.	Microbial Biotechnology: Progress and Trends, FarshadDarvishiHarzevili, Hongzhang Chen, First edition CRC Press/Taylor & Francis Group, 2014					

Detailed Syllabus

Course Code	19M21BT211	Semester : ODD		Semeste	er: III
				Session	2023 -2024
				Month	from: July to December
Course Name	Food and Dairy Microbiology				
Credits	4		Contact I	Hours	3-1-0

Faculty (Names)	Coordinator(s)	Dr. Smriti Gaur
	Teacher(s) (Alphabetically)	Dr. Smriti Gaur

COURSI	E OUTCOMES	COGNITIVE LEVELS
CO1	Explain the interactions between microorganisms and food environment.	C2
CO2	Illustrate the role of microorganisms in spoilage of food and dairy products with associated diseases.	C2
CO3	Analyze the effects of fermentation on quality of the dairy and non dairy products.	C4
CO4	Examine food preservation, safety and quality control.	C4
CO5	Identify applications of food and dairy Microbiology	C3

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Food and microorganism	Food as substrate for microorganism, Microorganisms important in food and dairy microbiology; Mold yeast and bacteria, Factors influencing microbial activity	05
2.	Food Spoilage and Food borne diseases	Contamination of food, general principles underlying spoilage, Spoilage of various foods and food products; cereals and cereal products, bakery products, dairy products, meat poultry and sea foods, Eggs, vegetables and fruits, sugar and sugar products,	10

		Microbiological examination of milk and milk products, source of their contamination and control, Food borne diseases: Staphylococcal, E.coli, Salmonellosis, Shigellosis, Listerial infections, Mycotoxins.	
3.	Food Preservation & Principles	General principles of food preservation, pasteurization of milk, Preservation by use High Temperature, Low temperature, drying, food additives, radiation, High-Pressure Processing Pulsed Electric Fields, Aseptic Packaging, Manothermosonication,	10
4. Fermented food		Microbiology of fermented food products, traditional fermented food items like beverages (cereal and fruit juice based), bakery, fermented Vegetables and dairy products (cheese, yoghurt, fermented milk, cultured buttermilk, Kefir)	06
5.	Food safety and control	Microbiological quality standards of food, FDA, HACCP, ISI.	05
6.	Applications of Food Microbiology	Functional food, Intestinal Beneficial Bacteria-Concept of Prebiotics and Probiotics, Genetically modified foods, Biosensors in food, Milk as a source of bioactive peptides	06
		Total number of Lectures	42
Evaluati	ion Criteria		
Compor T1 T2 End Sem TA Total	nents nester Examination	Maximum Marks 20 20 35 25 100	

Project based learning: Each student will opt a topic based on applications of food Microbiology. They will present and discuss in detail about the topic. This will enhance the student's understanding about various application aspects of food and dairy microbiology. They will get an insight into how different microorganisms can be employed for food and dairy based applications.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Food Science & Food Biotechnology, G.F.G Lopez and GVB Canovas CRC Press, Florida(2003)
2.	Bioprocess and Biotechnology for functional foods and Nutraceuticals, J.R Neeser , J.Bruce German Marcel and Dekker , New York (2004)
3.	Food Microbiology, Frazier W C, Westoff DC, Vanitha NM, Mc Graham Hill Education (2013)
4.	Fundamental Food Microbiology, 3rd edition by B. Ray., CRC press, (2006).
5.	Food Microbiology by M.R. Adams, Royal Society of Chemistry, (2008).

DIAGNOSTIC MICROBIOLOGY

Detailed Syllabus Lecture-wise Breakup

Subject Code	19M22BT211	Semester 3rd Session 2023-24		
		Odd 2023 Month from August to December		
Subject Name	Diagnostic Microbiology	·		
Credits	3	Contact Hours 3 + 1		
Faculty	Coordinator/Teacher	Dr. Rajnish (CC), Dr. Sonam Chawla		

	COURSE OUTCOMES	COGNITIVE LEVELS
CO1	Interpret the fundamental concepts, tools and methods of microbial diagnostics in relation to various human diseases/disorders	Applying level (Level III) C3
CO2	Apply principles of Molecular diagnostics to genetic counselling, communicable, non-communicable and lifestyle diseases/disorders	Applying level (Level III) C3
CO3	Correlate different advances in microbial diagnostics to human microbiome, their significance in disease management and therapy	Analysis level (Level IV) C4
CO4	Identify importance as well as ethical and biosafety issues related to the field of diagnostics	Understanding Level (Level II) C2

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Introduction	Fundamentals of Microbial diagnostics and its significance in post genomic era in health care industry	03
2.	Microbiological diagnostic tools for bacterial pathogen detection	Microscopy and other culture based tests, Blood and other body fluids based biochemical methods for pathogen detection, strategies for antimicrobial sensitivity testing, Urea Breath Tests for <i>Helicobacter pylori</i>	08
3.	Advanced Techniques in Diagnostic Microbiology	Principles and characteristics of techniques ranging from rapid antigen testing, to advanced antibody detection, <i>in vitro</i> nucleic acid amplification techniques, Gene and signal amplification techniques, non-PCR mediated target amplification, RT-PCR and microarray based Identification, probe technologies, FISH, RFLP, RNA inhibition analysis, OLA, DNA finger printing	10
4.	Diagnostics for assessing viral infections	Methods in basic virology, Human Immunodeficiency Virus (HIV), Hepatitis C, B & A Virus, Covid and emerging microorganism detection and genotyping	04
5.	Diagnostic tools for Genetic counseling and Cytogenetics	Genetic analysis for inherited disorders, mutation detection, detection of allelic diversity (SSCP/DGGE/ DHPLC, PTT tests), Heterozygote Testing, Presymptomatic Testing, Prenatal Testing, and Newborn Screening	05

6.	Lifestyle diseases/disorders,	Human microbiome and Cancer, sequence-based gut microbial identification and applications in disease management and therapy	06
	Human microbiome		
7.	Applications in Health care & Forensics	Diagnostic tools applicable in Hemoglobinopathies, Plasmapheresis, Blood Banking, blood and blood product screening forensics & Quarantine	04
8.	Regulatory, Ethical and biosafety issues in diagnostics	Laboratory safety and specimen management, regulatory controls, case studies related to ethics in diagnostics	02
		Total number of Lectures	42

Project Based Learning (PBL): Students will present recent advancement in diagnostics in class presentations, followed by a discussion on comparison of advancement with previous technologies and the benefit of the said advancement in terms of ASSURED criteria.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Tang, Yi-Wei, Stratton, Charles W. (Eds.), "Advanced techniques in Diagnostic microbiology", 2018, Springer publication		
2.	Bailey & Scott's Diagnostic Microbiology, 14th Edition, by Patricia Tille, 2017, Elsevier Evolve		
3.	Jean-Louis Serre, "Diagnostic techniques in Genetics", 2006, John Wiley & Sons publication		
4.	Trent R J, "Molecular Medicine : An Introductory text", Churchill Livingston publication		
5.	Refereed papers from scientific journals for case studies		

Course Code	19M21BT213	Semester Odd	Semester: III
			Session: 2023-24
			Month from: July to December
Course Name	Bioinformatics and Omics	s	
Credits	3	Contact Hours 3	
Faculty	Coordinator(s)	Dr. Nidhi Batra	
(Names)	Teacher(s) [Alphabetically)		

COURS will be a	E OUTCOMES: Upon completion of the course, students	COGNITIVE LEVELS
will be a		
C112.1	Overview of the bioinformatics methods and resources	Understanding Level C2
C112.2	Explain about the Sequence analysis and highthotuput methodologies	Understanding Level C2
C112.3	Apply Genome annotation and proteome analysis in solving biological problems.	Apply Level C3
C112.4	Analyzing the use of Phylogenetic analysis in Microbial System annotation	Analyze Level C4

Course Description

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	1. Overview of bioinformatics and Microbial Informatics Microbial Informatics Bioinformatics, computers and microbes basics of internet, Network-based service (Cloud & Grid Computing), microbial informatics, environment and diversity		5
2.	Biological databases, microbial genomes Projects	Basics of Database designing and modeling, Designing policies, File formats (FASTA, PIR, Genbank), data storage, retrieval, <i>Microbial</i> Genomes, Genbank,	5

		Pfam, KEGG, Brenda, MBGD, biodiversity databases	
3.	Sequence analysis (Sequence, retrieval, methods, substitution matrices, submission and analysis)	String comparison (substring, subsequence), Hamming and Levenshtein distance, Sequence alignment (pair wise, multiple) Dot plot method, Dynamic programming, <i>Needleman–Wunsch</i> and <i>Smith–Waterman</i> algorithm, BLAST algorithm ,FASTA algorithm comparison, PSI blast, gap penalty, e-value, statistical importance, PAM and BLOSUM matrices, log odd score, Sequence submission tools (Banklt, Sequin)	8
4.	High throughput data generation and analytics (NGS and Microarray)	Genome sequencing projects, NGS generation, Computational tool and pipelines, microarray technology, data analysis methods and tools	5
5.	Genome annotation procedures and analysis tools	Gene structure, Gene finding strategies Glimmer, Genscan, promoter region identification, promoter signals, genome annotation tools, Gene ontology, biological networks	4
6.	Protein Structure prediction and proteome analysis	Protein sequence and structures (primary, secondary and tertiary) and prediction, protparam, <i>Chou–Fasman</i> algorithm, GOR method, Concepts of structural modeling and tools (Comparative homology modeling, Threading), PHD, ANOLEA, Transmembrane protein prediction tools, Mass spectrometry data and analysis	6
7.	Phylogenetic analysis	Phylogeny, Phylogenetic reconstruction distance matrix, types of trees, Rooted unrooted, distance based methods (UPGMA, FM, NJ Methods), Character based methods (Parsimony method, Maximum likelihood method), tree evaluation, (bootstrapping, Jackknifing), functional inferences. Phylogenetic profiles.	5
8.	Microbial System biology, Environment, and Metagenomics	System biology, microbial diseases. Metagenomics, Environmental Informatics and health	4

	Total number of	f Lectures	42
Evaluation	ion Criteria		
Compone	nents Maximum Marks		
T1	20		
T2	20		
End Seme	nester Examination 35		
TA	25 (Assignment 1, MCQ, PBL)		
Total	100		
PBL: Stu	udents will choose any protein prediction and proteome analysis	s tools to so	olve the
_	al problem linked to a particular disease. How is it commercial	•	
	e or as a target to manage the disease? The understanding of pr	oteins is reg	uired for
Biotechno	nology companies including patent firms.		
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Attwood T.K. & Smith Parry., "Introduction to Bioinformat: Cummings, 2001	cs", Benjan	nin
2.	BaxevanisA., D & Ouellette "Bioinformatics A practical gui and protein", Wiley-Interscience, 1998.	de to analys	is of genes
3.	David Mount "Bioinformatics: Sequence and Genome analy Harbor Laboratory Press, 2001.	sis", Cold S	pring

Course Name & Code: **Microbiology Lab III** (19M25BT211), NBA Code: C270 **Semester III** (**Odd**)

Course Code	19M25BT211	Semester Odd	Semester III
			Session 2023-24
			Month from July to December
Course Name	Microbiology L	ab-III	
Credits	4	Contact Hours	8

At the completion of the course, students will be able to,

S. No.	DESCRIPTION	COGNITIVE LEVEL (BLOOM'S TAXONOMY)
C270.1	Apply concepts of food microbiology	Apply level (C3)
C270.2	Analyse bacterial transformation techniques	Analyze level (C4)
C270.3	Evaluate cloning techniques	Evaluate level (C5)
C270.4	Apply bioinformatics tools for microbial genome analysis	Apply level (C3)

Module No.	Title of the Module	List of Experiments
1.	Food microbiology	Enumeration of yeasts and moulds in food; microscopic examination of moulds; microbial standards for different foods and drinking water
2.	Food adulteration	Food adulteration: methods of detection of common adulterants in food, heat preservation of food; food fermentations (PBL: To produce novel/indigenous fermented food products)
3.	Bacterial identification & diversity studies	Use of Bioinformatics tools, marker genes & phylogenetic analyses for species identification and study of diversity
4.	Comparative Omics	Computational tools for Gene, Genome and Proteome analysis of microbes of interest; Network studies

PBL: To produce novel/indigenous fermented food products

<u>Detailed Syllabus</u> <u>Lecture-wise Breakup</u>

Course Code	17M12BT118	Semester Odd (MSc Micobiology 111)	Semester . III. Session 2023- 2024 Month from July – Dec 2023
Course Name	Product Develo	opment in Biotechnology	
Credits	3	Contact Hours	3

Faculty (Names)	Coordinator(s)	Prof. Neeraj Wadhwa
	Teacher(s) (Alphabetically)	Prof. Neeraj Wadhwa

COU	RSE OUTCOMES	COGNITIVE LEVELS
CO1	Outline various processes relevant for Biobusiness	Understand Level (C2)
CO2	Compare marketing techniques and related ethics	Apply Level (C2)
CO3	Select appropriate technology for the production of Biological products	Understand Level (C3)
CO4	Explain financial, regulatory, health policy aspects for biobased industries	Understand Level (C2)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Biotechnology Industries overview	Biotechnology as a function of science and business, Functional units Company structure and functions Emerging technology and technical convergences issues	5
2.	Business in the context of biotechnology Entrepreneurship-	Science/development, the idea and its development Plant tissue culture lab-equipment- glasswares chemical requirement construction, techniques in culturing and export abroad, Vermitechnology, Mushroom cultivation, single cell protein, Biofertilizer technology-production, Textile processing, leather treatment, leather industry set up Detergent industry, bakery, Unit processes in food industry	14
3.	Product development	a. Production of commercially important primary metabolites like organic acids, amino acids and	12

		alcohol & Production processes for various classes of secondary metabolites: Antibiotics, Vitamins and Steroids. b.Production of Industrial Enzymes, Biopesticides, Biofertilizers, Biopreservatives, Biopolymers, Pulp and Paper, SINGLE CELL PROTEIN & Mushroom culture, Bioremediation. Bioprocess strategies in Plant Cell organ culture and Animal Cell culture.			
4.	Biobusiness plans	Concerns and oppurtunities, Environmental clearances requirement from government, Quality checks and validation certificates, Packaging concerns, Policy and regulatory concerns,	6		
5.	Bioremediation Bioethics and legal issues	Product development, Sustainability, Environmental concerns of product and their waste.	5		
		Total number of Lectures	42		
Evaluation	n Criteria				
Componer		aximum Marks			
T1 T2	20 20				
	End Semester Examination 35				
TA		25 (Assignment)			
Total		100			
Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	Jordan, J. F. (2014). Innovation, Commercialization, and Start-Ups in Life Sciences. London: CRC Press.				
2.	Desai, V. (2009). The Dynamics of Entrepreneurial Development and Management. New Delhi: Himalaya Pub. House.				
	Cruger, Wulf and Anneliese Crueger, "Biotechnology: A Textbook of Industrial				
3.	Microbiology", 2nd Edition, Panima Publishing, 2000				
4	Karthikevan S and Arthi	ur Ruf." Biobusiness"MJP Publication Chennai India 20	000		

Biosensors(17M12BT111) Course Description

Course Code	17M12BT111	Semester Odd	Semester MSc/Integ. Mtech III/VII
			Session 2023-2024
			Month from: July-December
Course Name	Biosensors		
Credits	3	Contact Hours	3

Faculty (Names)	Coordinator(s)	Prof.Sudha Srivastava
	Teacher(s) (Alphabetically)	Prof.Sudha Srivastava

COU	RSE OUTCOMES	COGNITIVE LEVELS
CO1	Explain principle and working of biosensors and characterization techniques	Understand Level(C2)
CO2	Evaluate different methods of immobilization and their effect on biosensor performance	Evaluate Level (C5)
CO3	Analyze performance of a biosensor for disease diagnosis, environmental pollution, pathogen quantification	Analyze Level (C4)
CO4	Design strategy for fabrication of a given biosensor with high sensitivity and wide detection range	Create Level (C6)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction:	Sensors and biosensors, definitions, types of sensors, markets, target analytes, glucose and other medical sensors	2
2.	Biosensor Advancements and nanotechnology	First-, second-, third generation biosensors, Nanotechnology and present day biosensors	3
3.	Basic Design Considerations	Calibration, dynamic Range, signal to noise, sensitivity, selectivity, interference.	3
4.	The biological component	Whole cell sensors, enzymes – sensing substrates or inhibitors, antibodies (Mab, Fab). And other binding proteins, oligonucleotides and aptamers.	3
5.	Types of biosensors	Optical biosensors, Electrochemical biosensors, Piezoelectric biosensor, Calorimetric biosensors	8
6.	Immobilization method	Non-covalent immobilization - entrapment and multipoint electrostatic attachment. Covalent attachment via thiol, amino and hydroxyl groups.	4

		Affinity interactions - avidin/biotin, , complementary oligonucleotides.	
7.	Techniques for sensing: Physical and chemical	Absorbance, fluorescence, chemi/bioluminescence and phosphorescence, Surface Plasmon Resonance (SPR), quartz crystal microbalance, cyclic voltammetry	8
8.	Sensor stabilization	Storage and operational stability. Polyols, polymers and low Mw compounds as stabilizing agents for drying and long term storage. Stabilization mechanisms.	3
9.	Applications	Pharmaceutical, agricultural, food safety, biomedical applications, food processing: state of the field, market potential, unique design criteria and needs, current sensors in use.	8
Total number of Lectures			42
Evaluati	ion Criteria		
Components		Maximum Marks	
T1		20	
T2		20	

PBL: Students would be presenting and/or submit report in a group of 3-4, about biosensors for various application, their fabrication, performance characterization.

25 (Class Test, Presentation)

35

100

End Semester Examination

TA

Total

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)
 Ligler, F.S. and Rowe Taitt, C.A. 2002. Optical Biosensors: Present & Future. Elsevier, The Netherlands. ISBN: 0-444-50974-7.
 Yang, V.C. and T.T. Ngo. 2000. Biosensors and Their Applications. Kluwer Academic/Plenum Publishers, New York, NY. ISBN: 0-306-46087-4.
 Recent research articles