			LC	cture-wise Bre		1			
Course Code		19M21PH212		Semester: Od	ld	Semest	er: II	Session	2023-2024
						Month	from:	July-Decer	nber
Course Name Advanced Quant		tum N	Aechanics						
Credits			4		Contact I	Hours		3+	1
Faculty (N	ames)	Coordinator		Shiv Prasad I	Purohit				
		Teacher		Shiv Prasad I	Purohit				
COURSE	OUTCO	OMES						COGNIT	IVE LEVELS
CO1	Recall	basic ideas of adv	ance	d quantum mec	hanics			Remember	ring (C1)
CO2	-	n various physical advanced quantum	-		can be expla	ined only		Understan	ding (C2)
CO3	perturb	time-independent pation methods, qu istic quantum mec	uantur	m collision theo	ory, quantur	n statistics	s and	Applying	(C3)
CO4	Analyz	ze advanced quant	tum m	nechanical prob	olems.			Analyzing	(C4)
Module No.	Title o	f the Module	Тор	Topics in the Module					No. of Lectures for the module
1.	metho	oximation ds for time- dent problems	Ferr	Time-dependent perturbation theory, General features, Fermi's golden rule, periodic perturbation, the adiabatic approximation and application to some atomic systems.				8	
2.	Quant theory	collision	Scattering experiments and cross-sections, non- relativistic scattering theory, scattering by central potential, phase shift analysis, optical theorem, method of partial waves, scattering by a square well potential, the Born approximation, some applications of quantum					8	
3.	Quant	um statistics	collision theory. The density matrix, the density matrix for a spin-1/2 system, polarisation, the equation of motion of the density matrix, quantum mechanical ensembeles, applications to single-particle systems, systems of non- interacting particles, consequences of particle statistics, ideal quantum gases, Bose-Einstein condensation in atomic gases.				6		
4.	Relati mecha	vistic quantum inics	The Klein-Gordon equation, the Dirac equation, physical6implementation and applications, covariant formulation6of the Dirac theory, plane wave solutions of the Dirac6equation.6				6		
5.	-	ization of Fields	the Han field the	ssical and quan field, time de niltonian equati ls with more t non-relativisti ruction and n	erivatives, ions, quantu han one con ic Schrodin	classical um equation mponents nger equ	Lagran ons for , quant ation,	ngian and the field, tisation of creation,	8

	relations and operators, electromagnetic field in vacuum,					
	interaction between charged particles and					
	electromagnetic field.					
6. Some application	s of The van der Waals interaction, electrons in solids, the 4					
quantum mechar	nics decay of K-mesons, semiconductor quantum devices,					
(only qualitative	quantum communication					
discussion)						
	Total number of Lectures40					
Evaluation Criteria						
Components	Maximum Marks					
T1	20					
T2	20					
End Semester Examination	35					
ТА	25 [PBL (10 M); 2 Quizzes (3M+3M); Attendance (5 M) and Class performance (4					
	M)]					
Total	100					
Recommended Reading mate	erial: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books,					
Reference Books, Journals, Re	ports, Websites etc. in the IEEE format)					
	Leonard I. Schiff, Quantum Mechanics, McGraw-Hill, Singapore, 1985					
	B. H. Bransden and C. J. Joachain, Quantum Mechanics, Pearson Education Ltd., 2000					
	J. J. Sakurai, Advanced Quantum Mechanics					
,	J. D. Bjorken& S. D. Drell, Relativistic Quantum Fields					

Project Based Learning: The TA components of evaluation criteria involve the PBL component of MM: 10. The PBL exercise is given to each student in areas where the quantum mechanics plays a central role. The objective of the PBL exercises is chosen to enhance the employability of students in the areas of quantum technologies.

Course Code	19M21PH213	Semester: Odd	1	Semester: III Session 2023 -2024s	
				Month f	from: July-December
Course Name	Numerical Techniques and Computer Programming				
Credits	03		Contact H	Iours	03

Faculty (Names)	Coordinator(s)	Dr. Ravi Gupta
	Teacher(s) (Alphabetically)	Dr. Ravi Gupta

COURSE	OUTCOMES	COGNITIVE LEVELS
C213.1	Define key concepts used in programming, data structures, Numerical methods.	Remember Level (C1)
C213.2	Explain basics of programming, data structures, numerical analysis, parallel programming.	Understand Level (C2)
C213.3	Create programs using C to implement various problems in numerical analysis.	Apply Level (C3)
C213.4	Create programs using Mathematica and MATLAB to solve various problems in numerical physics.	Apply level (C3)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Programming	Fundamentals of Programming, high/low level languages, compilation and linking, Basic data types, Arithmetic operators, Elementary introduction to header files, print f, scan f and control functions of Turbo C/C++, Looping	10
2.	Data Structures	Oneand two dimensional arrays of various data types, Operations involving matrices and vectors, String of characters and related library functions, Functions and arrays, Structures, array of structures, unions and enumerations, Command line arguments. Dynamical memory allocation, Plotting simple geometric figures	10

3. Numerical Techniques		Simple C programs covering some elementary topics in numerical analysis such as root finding, interpolation, numerical differentiation and integration, numerical linear algebra, Euler and Runga-Kutta methods.	15
4.	Approximation methods	Basic ideas of parallel computing and introduction to the software popularly used in Physics such as Mathematica and MATLAB	05
	40		
Evaluation	n Criteria		
Componen T1 T2 End Semes TA assessmen Total	ter Examination	Maximum Marks 20 20 35 25 [Attendance (05 M), Class Test, Quiz, <i>etc</i> (6 M), PBL (1 100	.0 M) Internal

	ommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, rence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Greg Perry and Dean Miller, C Programming Absolute Beginner's Guide, Paperback, 2013.
2	Bjarne Stroustrup, C++ Programming Language, Paperback, 2013.
3	K. E. Atkinson, Numerical Analysis, John Wiley (Asia), 2004.
4	S. C. Chapra and R. P. Canale, Numerical Methods for Engineers, Tata McGraw Hill, 2002.
5	Stephen Wolfram ,The Mathematica Book, Fifth Edition , Wolfram Media, Inc., 2012.
6	A. Gilat, MATLAB An Introduction With Applications 4th Edition, John Wiley, 2013.
7.	YashavantKanetkar, Let Us C, 16th Edition, BPB Publications, 2018
8.	B. S. Grewal, Numerical Methods in Engineering and Science with Programs in C, C++, and MATLAB, Khanna Publishers, 2013

Project Based Learning: Students are required to write programming code individually using any of the tools or programs; and do a presentation in the end. This knowledge of coding can be utilized in different software organizations/firms/ industries.

Course Code	19M21PH214	Semester: Odd		Semester: 3rd Session: 2023-2024 Month from: July-December		
Course Name	Advanced Condens	ics-1				
Credits	3		Contact H	lours	3	
Faculty (Names)	Coordinator(s)		Manoj Kumar			
	Teacher(s) (Alphabetically)					

COURSE	OUTCOMES		COGNIT	IVE LEVELS	
C214.1	·	Recall basic concepts related to magnetism, transport phenomena, phase transition and super conductivity			
C214.2		ance and value of condensed matter physics, both the wider community	Understan	d Level (C2)	
C214.3	Develop knowledge and models studied	of conception or notion involved in various theories in this course	Apply Lev	vel (C3)	
C214.4	Make use of variou theories.	is methods and solve problems related to studied	Apply leve	el (C3)	
Module No.	Title of the Module	Topics in the Module		No. of Lectures for the module	
1.	Dielectrics and Ferroelectrics	Dielectrics, Maxwell Boltzmann equations, Polari macroscopic electric field, Local electric field of Lorentz field, Polarizabilty, Classius-Mossoti rela of polarization and polarizabilities, Frequency depe polarizabilities. Ferroelectric crystals and structu transitions, Order-disorder phase transition, Disp soft mode transition, LST relation, Landau Theory transition, First order and second order phase Anti-ferroelectricity, Ferroelectric domains (90° a Piezoelectricity and piezoelectric relations	f an atom, tion, Type endence of ural phase lacive and y of Phase transition, and 180°),	12	
2.	Magnetism	Magnetiztion and magnetic susceptibility, Langevin diamagnetism and Van Vleck paramagnetism, theory of Paramagnetism, Curie Brillouin law. Cu ferromagnets, Magnons, Curie temperature susceptibility of Ferrimagnets, Néel temperature ferromagnetic order, Brags-Willium theory, H model, Ising model; Elements of magnetic pro metals, Landau diamagnetism, Pauli paramagnetis ferromagnetism; Magnetic resonance; NMR and E	12		
3.	Transport Properties	ansport Boltzmann equation; Relaxation time approximation; General transport coefficients; Electronic conduction in metals: Thermoelectric effects: Transport phenomena in 10			

4.	Superconductivity	Cooper pairing and BCS theory; Ginzburg Landau theory; Flux quantization; Supercurrent tunneling; DC and AC Josephson effects; High-Tc superconductors.	6		
		Total number of Lectures	40		
Evaluation	n Criteria				
Components		Maximum Marks			
T1		20			
T2		20			
End Semes	ster Examination	35			
ТА		25 [Attendance (5 M), Quizzes, <i>etc</i> (6 M), PBL mode (10 M), assessment (4 M)]	, and Internal		
Total		100			

Reco	ommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books,
Refe	rence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Kittel C, "Introduction to Solid State Physics", 8th Ed. Wiley eastern Ltd
2	Ashcroft N W and Mermin N D, "Solid State Physics", Holt-Saunders
3	Chaikin P M and Lubensky T C, "Principles of Condensed Matter Physics", Cambridge University Press
4	Harrison P, "Quantum Wells, Wires and Dots", Wiley & Sons Ltd.
5	B. D. Cullity and C. D. Graham, "Introduction to magnetic materials" John Wily & Sons, Inc, 2011
6	K. H. J. Buschow and F. R. de Boer, "Physics of Magnetism and Magnetic Materials" Kluwer Academic
	Publishers, 2003
7	Stephen Blundell, "Magnetism in Condensed Matter" Oxford University Press (2001)
8	M. Tinkham, "Introduction to superconductivity" McGrawHill, New York. (1996); Dover Books (2004)
9	P. G. de Gennes, "Superconductivity of metals and alloys" W. A. Benjamin, New York (1966); Perseus
	Books (1999)
10	A. A. Abrikosov, "Fundamentals of the theory of metals" North Holland, Amsterdam (1998)

Project Based Learning: This course contains the materials which are widely used in high tech industry. As a Physics course, students are trained to understand the properties of materials and to do assignment/project based on the theoretical and experimental fundamental they have learned. The project based on these studies to be evaluated.

Course Code	19M25PH211	Semester: Odd		Semester: III Session 2023 -2024			
				Month	Month from: July-December		
Course Name	Laboratory-3 (Solid State Physics)						
Credits	04	Contact I		Hours	08		

Faculty (N	(Names) Coordinator(s) R.K. Gopal					
		Teacher(s) (Alphabetically)	() Tisinsi Bhathagar, Bhiesh Tripath, Manoj Hamar, Parti Sopar			
COURSE	OUTCO	DMES		COGNITIVE LEVELS		
C216.1	Explain	Explain the principal and working of experimental setup.Understand Level (C2)				
C216.2	Plan th	Plan the experiment and take measurements. Apply Level (C3)				
C216.3	Analyz	Analyze the data obtained and calculate the error. Analyze level (C4)				
C216.4	Interpr	Interpret and justify the results. Evaluate Level (C5)				

Module No.	Title of the Module	Topics in the Module	CO
1.	Structural characterization	 Structural determination of given samples (BaTiO₃, CoFe₂O₄, ZnO etc) by X-ray diffraction technique. Determination of structural parameters (lattice parameters, crystallite size etc) of given samples from XRD data. 	2, 3, 4, 5
2.	Dielectric measurements	 Temperature dependent dielectric measurements of given sample and their analysis. Frequency dependent dielectric measurements of given sample and their analysis. To measure the coercive field (Ec), Remanent Polarization (Pr), and Spontaneous Polarization (Ps) of Barium Titanate (BaTiO3) sample. 	2, 3, 4, 5
3.	Spectroscopic measurements	 6. Determination of optical band gap of prepared given sample by UV-Vis spectroscopy, 7. Analysis of various bonding in given samples by Infrared spectroscopy. 	2, 3, 4, 5
4.	Transport Properties	 8. To study the temperature dependence of Hall coefficient of N and P type semiconductors. 9. Electrical resistivity of high resistive material as a function of temperature using DC four probe method. 10. Determination of co-efficient of linear thermal expansion of polymer as a function of temperature. 	2, 3, 4, 5

	11. To study C-V characteristics of various solid state devices & materials. (like p-n junctions and ferroelectric capacitors)	
Evaluation Criteria		
Components	Maximum Marks	
Mid Term Viva	20	
End Term Viva	20	
Day To Day Evaluation	60	
Total	100	

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)								
1.	Melissinos Physics", Acad	A.C. demic Press	and	Napolitano	J,	"Experiments	in	Modern

		1		Lecture-wi							
Course Code 20M22PH21			3				Semester: IIII Session: 2023-2024 Month from: July to December				
Course Na	me	Semiconduct	or and F	Electronic Device	es			J			
Credits			3		Contact I	Hours		3-0)-0		
Faculty (N	(ames)	Coordinato	r	Dinesh Tripath							
	Teacher Dinesh Tripathi										
COURSE	OUTCO			2				COGNIT	IVE LEVELS		
G220 2 4	Defi	ne terminology	and cor	ncepts of semico	nductors in	correlatio	on with	Rememł	pering (C1)		
C230-3.1		niconductor related electronic devices									
C220.2.2									anding (C2)		
C230-3.2	_	d devices in equilibrium as well as in steady state condition.									
C220.2.2		_		ons and laws of s	-		cs to	Applyin	g (C3)		
C230-3.3		related proble	-			1 2		11.5			
C220 2 4		*		erent semicondu	ctor and el	ectronic	devices	Evaluati	ng (C5)		
C230-3.4		nderstanding t									
Module	Title o	of the	Topics	s in the Module					No. of		
No.	Modu	le	-						Lectures for		
									the module		
1.	Semice	onductors	Energy	v bands, direct	and indirec	et semico	nductors	s, charge	12		
				carriers, mobility, drift of carriers in field, Diamond and							
			Zinc-Blende structure, bonds and bands in semiconductors,								
			intrins	intrinsic and extrinsic semiconductors, law of mass							
action, Hall eff					and c	yclotron	resona	ince in			
			semico	onductors.							
2.	Optica	l Injection	Carrier	r life time, dir	rect and in	ndirect re	ecombin	ation of	8		
			electron and holes, steady state carrier generation, Diffusion								
				ift of carriers, 1		•		-			
				injection, The H							
3.	Junctio	ons		Semiconductor		-			10		
			-	prium conditions			-				
				photodiode, Ll	ED, solar	cell, Het	ro-junct	ions and			
			Laser o		• .	01			10		
4.	Device	es	*	r Junction Tr		e	transp		10		
			-	ication, minorit	-						
			currents switching behavior in bipolar transistor, FET and								
		MOSFET: Ideal MOS capacitor, effect of work function and interface charge on threshold voltage. Gunn Diode									
				errace charge of				Lectures	40		
Evaluation	Critor	ia			1	otai nun		Lectures	40		
Componer		14	Maxim	um Marks							
T1	113		20	uni 17141 NJ							
T2			20								
End Semes	ter Exar	nination	35								
TA			25 [Attendance (07 M), Class Test/Quizzes, <i>etc</i> (07 M),								
			-	nments in PBL n		-					
			(05 Ŭ		× ×						

Tota	ıl 100					
Reco	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books,					
Refe	rence Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	Semiconductor Physics and Devices, 4th Edison by Donald A Neamen and Dhrubes Biswas					
2.	Physics of Semiconductor devices, Wiley-Interscience by S. M. Sze,					
3.	Solid State Electronic devices by Ben G.Streetman,					
4.	Semiconductor Devices, Mc Graw Hill by Mauro Zambuto					

Project Based Learning: Students will be given small projects in groups to enhance their understanding and interest in the course by correlating topics taught and their applications in solving different physical problems of real worlds. Students will be asked to submit the report of given project and give presentations of the same.