Detailed Syllabus Lecture-wise Breakup

Course Code	17B1NCI731	Semester ODD		Semeste	rVII Session 2023 -2024
		(specify Odd/Ev	ven)	Month fr	rom July 2023 to Dec 2023
Course Name	Machine Learning and Natural Language Proc		essing		
Credits	3		Contact H	lours	3-0-0
Faculty (Names)	Coordinator(s) Dr. Archana Pu		var(J-62), E	Dr.Laxmi (Chaudhary(J-128)

	Teacher(s) (Alphabetically)	Dr. Ankit Vidyarthi, Dr.ArchanaPurwar, Dr.Laxmi Chaudhary
--	--------------------------------	---

COURSE O	COGNITIVE LEVELS	
C430-2.1	Understand different syntax, semantics, mathematical concepts, and language models in NLP	Understand Level [Level 2]
C430-2.2	Apply different models for POS tagging and probabilistic parsing techniques in NLP.	Apply Level [Level 3]
C430-2.3	Apply different approaches for Topic modeling.	Apply Level [Level 3]
C430-2.4	Analyze different supervised and unsupervised techniques for text classification.	Analyze Level [Level 4]
C430-2.5	Choose appropriate NLP concepts and machine learning techniques for NLP to solve the real world problems	Evaluate Level [Level 5]

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction and basic of text processing	Introduction to Machine Learning & NLP, Challenges, Tokenization, Lemmatization, Data representation	4
2.	Basic of Mathemati cs for language Model	Linear algebra, Probability , N Gram Model	4
3.	Parts of Speech Tagging	Various Models: Hidden Markov Model, SVM, CRF, RNN, LSTM	10
4.	Parsing	Linguistic Essentials, Markov Models, Applications of tagging, Probabilistic parsing - CFG, CSG, PCFG	8
5.	Text classificat ion	Supervised: Bayesian, Naive Bayes, sentiment analysis, text classification, Unsupervised: K- means, Expectation-Maximization (EM) algorithm, MaxEnt classifier	6

6.			
	Topic Modelling	Topic Modelling: Latent Dirichlet Allocation	3
		(LDA) and its Variants	-
		` ´ ´	
7.	Applications	Document summarization, Co-referencing, noun	7
		phrase chunking, named entity recognition, co-	
		reference resolution, parsing, information	
		extraction, Machine Translation, Spell	
		Correction, News Article Title Generation, Code	
		Categorization, Question	
		Answering (Eliza), Generative AI, Large	
		Language Models	
		Total number of Lectures	42
Evaluation	n Criteria		
Compone	nts	Maximum Marks	
T1		20	
T2		20	
End Semes	ster Examination	35	
ТА		25 (Attendance, Assignment/Quiz, PBL)	
111		100	

Project based learning: Each student in a group of 2-3 will apply Machine Learning and Natural Language Processing models to solve day-to-day problems. To make subject application based, the student applies ML & NLP technologies to the task of document summarization, information extraction, question answering, spell correction and many more. Applicability of part-of-speech tagging, parsing, document classification and topic modelling enhance the students'knowledge and help their employability into real-time application domains.

	ommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, rence Books, Journals, Reports, Websites etc. in the IEEE format)
Reco	ommended Textbooks: Author(s), Title, Edition, Publisher, Year of Publication etc.
1	Hapke, Hannes, et al. Natural Language Processing in Action: Understanding, Analyzing, and Generating Text with Python. United States, Manning, 2019.
Reco	ommended Reference Books: Author(s), Title, Edition, Publisher, Year of Publication etc.
1	Pramod Singh, Machine Learning with PySpark: With Natural Language Processing and Recommender Systems, First Edition, Apress, 2018.
2	Rao, Delip, and McMahan, Brian. Natural Language Processing with PyTorch: Build Intelligent Language Applications Using Deep Learning. China, O'Reilly Media, 2019.
3	Géron, Aurélien. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. United States, O'Reilly Media, 2019.
4	Eisenstein, Jacob. Introduction to Natural Language Processing. United States, MIT Press, 2019.
5	Vajjala, Sowmya, et al. Practical Natural Language Processing: A Comprehensive Guide to Building Real- World NLP Systems. Taiwan, O'Reilly Media, 2020.
6	Raschka, Sebastian, and Mirjalili, Vahid. Python Machine Learning. United Kingdom, Packt Publishing, 2017.
7	Kochmar, Ekaterina. Getting Started with Natural Language Processing. United States, Manning, 2022.
8	Zhang, Yue, and Teng, Zhiyang. Natural Language Processing: A Machine Learning Perspective. India, Cambridge University Press, 2021.

Course Code	15B1NCI732	Semester: Odd	Semester: VII Session: 2023-2024
			Month from July to December
Course Name	Social Network Analysis		
Credits	3-0-0	Contact Hours	3

Faculty	Coordinator(s)	Dr. Bhawna Saxena (J62), Ms. Anuradha Surolia (J128)
(Names)	Teacher(s) (Alphabetically)	Anuradha Surolia, Bhawna Saxena

COURSE	OUTCOMES	COGNITIVE LEVEL
C431-9.1	Explain the fundamental principles and models related to social networks	Understand (Level 2)
C431-9.2	Interpret social network structure, characteristics, and metrics	Understand (Level 2)
C431-9.3	Apply social network analysis metrics to real-world datasets using software tools	Apply (Level 3)
C431-9.4	Apply techniques for link prediction, community detection and security in social networks	Apply (Level 3)
C431-9.5	Analyze and model the flow of information in social network for maximizing the cascade	Analyze (Level 4)

Module No.	Subtitle of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction a.	Concepts: how services such as Facebook, LinkedIn, Twitter, etc. are using SNA to understand their users and improve their functionality.	2
2.	Network Concept	Introduction: Graphs, Paths and components, Adjacency Matrices, Ways and Modes, Matrix Product, node degree, types of nodes and types of ties, actor attributes	3
3.	Random network models	Erdos-Renyi, Barabasi-Albert, Watts-Strogatz small- world model, shortest path, six degree of separation	5
4.	Social Network Visualization	Tools: Gephi, NetLogo, Pajek, EgoNet	2
5.	Characterizing whole network	Cohesion, reciprocity, Transitivity and clustering Coefficient, Triad census, Assortativity Index, Rich Club Coefficient, Neighbourhood overlap	3
6.	Network centrality	Undirected Non-valued networks: Degree, Eigenvector, betweeness. Directed Non-valued Networks: Degree, Eigenvector, closeness. Valued Networks, Negative tie Networks, subgroup: Cliques and groups	4
7.	Community Detection	Clustering, community structure, modularity, overlapping communities	6

8.	Link Prediction	The Katz Score, Hitting & Commute Time, Rooted	6
		PageRank, SimRank, Predictors Summary, Meta- measures	
9.	Information Diffusion	Cascading Behavior: Herd Behaviour, Information Cascade Model, Threshold Model, Cascade Maximization, Epidemic Modeling	5
10.	Security and Privacy in Social	Introduction, K-Anonymity, L-Diversity, Q-Anon, T- Closeness	6
	Network		
	Network	Total number of Lectures	42
Evaluati	on Criteria	Total number of Lectures	42
Evaluati Compon	on Criteria	Total number of Lectures Maximum Marks	42
	on Criteria		42
Compon	on Criteria	Maximum Marks	42
Compon T1 T2	on Criteria	Maximum Marks 20	42
Compon T1 T2	on Criteria ents	Maximum Marks 20 20	

Project based learning: Each student in a group of 3-4 will study a practical problem in social network analysis with its real-world applications. They will present it as a case study or give a practical demonstration of the problem and its solution. This detailed study using social network tools and techniques will help their employability into IT sector.

 Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

 Text Books

 1.
 Tanmoy Chakraborty, Social Network Analysis, Wiley, 2021.

 2.
 Reza Zafarani Mohammad Ali Abbasi Huan Liu, Social Media Mining: An Introduction, Cambridge University Press, 2017.

 3.
 Albert-László Barabási , Network Science, Cambridge University Press, 2017

4.	Alessandro Chessa and Guido Caldarelli, Data Science and Complex Networks: Real Case Studies with Python, Oxford University Press, 2016
5.	Niyati Aggrawal, Adarsh Anand, Social Networks: Modelling and Analysis, CRC Press, 2022
	Reference Books
1	Song Yang, Franziska B. Keller, Lu Zheng, Social Network Analysis: Methods and Examples, SAGE Publications, Inc, 2016.
2.	Narsingh Deo, Graph Theory with Applications to Engineering & Computer Science, Dover Publications Inc. 2016
3.	Stephen P. Borgatti, Martin G. Everett, Jeffrey C. Johnson, Filip Agneessens, Analyzing Social Networks Using R, SAGE Publications, 2022
4.	David Knickerbocker, Network Science with Python: Explore the networks around us using network science, social network analysis and machine learning, Packt Publishing, 2023

Course Code	15B1NHS731	Semester ODD (specify Odd/Even)		SemesterSession2023-24Month fromJuly2023 to December2023	
Course Name	Disaster Management				
Credits	3		Contact I	Hours	3-0-0

Faculty (Names)	Coordinator(s)	Dr Nilu Choudhary
	Teacher(s) (Alphabetically)	Dr Nilu Choudhary

COURSE OU	JTCOMES	COGNITIVE LEVELS	
C4O1-2.1	Understand basic concept of disasters, and its types, disaster prevention and risk reduction	Understand(C2)	
C4O1-2.2	Apply different approaches of Disaster Risk Reduction (DRR) Apply (C3)		
C4O1-2.3	Analyze and enhance awareness of institutional processes in the country during disaster.	Analyze (C4)	
C4O1-2.4	Evaluate strategies and develop skills to respond potential disaster with due sensitivity.	Evaluate (C5)	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module	
1.	Introduction to Disasters	Concepts and definitions of Disaster(Hazard, Vulnerability, Resilience, Risks)	4	
2.	Disasters: Classifications & Causes	Understanding Natural and manmade disasters. Social ,Economic, Political, Environmental, Health, Psychological.	4	
3.	Impact of Disaster on Caste, Class and Gender	Caste and disaster, Disaster discrimination, in terms of caste, class, gender, age location, disability, Role of Women's in Disaster	5	
4.	Approaches to Disaster Risk reduction	Disaster cycle - its analysis, Phases, Culture of safety, prevention, mitigation and preparedness, community based DRR, Structural - nonstructural measures roles and responsibilities of community.		
5.	Disaster Management Act(2005)	DM Act and Policy, plans, Programmes and Legislation.	3	
6.	Inter-relationship between Disasters	Factors affecting Vulnerabilities, differential impacts, impact of development of projects such as dams,	5	

	and Development	embankments, changes in land-use and relevance of indigenous knowledge, appropriate technology and local resources.	
7.	Disaster Risk Management in India	Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, and Health	5
8 Risk Society		Risk Society in 1992,Ulrick Beck,Processes of Modernization,The new paradigm of risk society	3
9	Global trends in disasters	Urbandisasters,Pandemics(COVID2019), Epidemics, complex emergencies, Climate change, Agenda21:For Local actions,	4
10	Disaster, Environment and Development	Environment Management, Waste Management, Types of Disaster Waste, Sources of Waste	4
	2	Total number of Lectures	42
Evaluat	ion Criteria		
Components T1 T2 End Semester Examination TA Total		Maximum Marks 20 20 35 25(Assignments/Case Study, Project, Attendance) 100	

Project Based Learning: Students in group of 5-6 will be given project to understand the menace of disaster through waste deposition in our environment. To make this subject application-based students develop cost effective and environmentally sound techniques and strategies for solid waste management. By installing high tech driven composters students can analyzeand evaluate the implications of waste in our environment through this live project. Converting solid waste in organic manure, produced in college mess -canteen, later on that organic manure and liquid manure can be used for gardens and parks in college premises.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Government of India, 2009. National Disaster Management Policy.				
2.	Gupta Anil K, Sreeja S. Nair. 2011 Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi				
3.	Indian Journal of Social Work 2002. Special Issue on Psychosocial Aspects of Disasters, Volume 63, Issue 2, April				
4.	Alexander David, Introduction in "Confronting Catastrophe", Oxford UniversityPress, 2000				
5	Coppola P Damon, 2007. Introduction to International Disaster Management				
6	Yojana :A DEVELOPMENT MONTHLY Magazine, Volume 61, January 2017				
7	S.K. Misra& V. K. Puri, Indian Economy, Himalaya Publishing House, 2011.				

8	Parasuraman, S. & P.V. Unnikrishnan, 2005, "Disaster Response in India: An Overview," India Disasters Report, Punjablok.
9	Satapathy S. (2009) Psychosocial care in Disaster management, A training of trainers manual (ToT), NIDM publication.
10	Blaikie, P, Cannon T, Davis I, Wisner B 1997. At Risk Natural Hazards, Peoples' Vulnerability and Disasters, Routledge.
11	Dave, R.K. (2018), Disaster Management in India : Challenges and Strategies
12	Disaster Management and Rehabilitation, Rajdeep Dasgupta, 2007
13	Jensen, John R., 2007, Remote Sensing of the Environment: An Earth Resource Perspective, 2nd Ed., Up Saddle River, NJ: Prentice Hall
14	NDMA, 2010, National Disaster Management Guidelines , Role of NGOs in Disaster Management

Course Description

Course Code	15B19CI791	Semester ODD		Semester VII Session 2023-2024	
		(specify Odd/Even)		Month from July to Dec 2023	
Course Name	Major Project Part – 1 (CSE)				
Credits	4		Contact I	Hours	

Faculty (Names)	Coordinator(s)	ordinator(s) Prashant Kaushik, Dr. Himani Bansal	
		Teacher(s) (Alphabetically)	Entire Department	
COURSE	COURSE OUTCOMES COGNITIVE LEVELS			COGNITIVE LEVELS
C450.1	.1 Summarize the contemporary literature&tools for hands-on in the respective project area			Understand Level (Level 2)
C450.2	Develop a working model for the identified problem			Apply Level (Level 3)
C450 .3	Analyze the specific requirements to develop the workable solution for the identified computing problem			Analyze Level (Level 4)
C450 .4	Evaluate the developed solution using test cases and performances			Evaluate Level (Level 5)
C450 .5	Create and report the results of the project in writtenformats			Create Level (Level 6)

Module No.	Title of the Module	List of Experiment	S CO		
1.					
2.					
•••					
n.					
Evaluatio	n Criteria		<u>.</u>		
Compone	nts	Maximum Marks			
Mid Seme		20			
Final Viva		30			
Project Report		20			
Day to Day Work		30			
Total		100			

Project based learning: Each student in a group of 2-3 will have to develop a Major Project based on different real-world problems using any open-source programming language. Students have to study the state-of-the-art methods before finalizing the objectives. Project development will enhance the knowledge and employability of the students in IT sector.

Lecture-wise Breakup					
Course Code	15B19CI793Semester OddSemester		Semester VII	Session 2023 -2024Monthfrom Julyto Dec	
Course Name	Summer Training &Viva NB	Summer Training &Viva NBA Code: C455			
Credits	Qualifying		Contact Hours		6-8 Weeks Industrial Training

Faculty (Names)	Coordinator(s)	Dr. Mukta Goyal,Kirti Aggarwal
	Teacher(s) (Alphabetically)	ALL FACULTY

COURSE OU	TCOMES	COGNITIVE LEVELS
C455.1	Summarize the contemporary activities with respect to their module, and explored tools for hands-	Understand Level (Level 2)
0.15511	on in the respective project area	
C455.2	Analyze industry requirements and work culture.	Analyze Level (Level 4)
C455.3	Apply technical knowledge to construct computing-based solution with respect to the identified	Apply(Level 3)
C455.5	problem at industry/institute.	
C455.4	Interpret and critically evaluate the solution for the problem	Evaluate (Level 5)
C455.5	Construct written discourse for presentation of work done at industry/institute	Create Level (Level 6)

Evaluation Criteria: The Industrial Training of students will be evaluated on the basis of Viva and Report. They will be graded either as satisfactory or unsatisfactory.

Detailed Syllabus

Course Code	16B1NCI648	Semester -Odd		Semester VII Session 2023 -2024	
		(specify Odd/Even)		Month from: July 23- Dec 23	
Course Name	Information Retrieval and Semantic Web				
Credits	3		Contact Hours 3 – 0		3 – 0 0
Faculty (Names)	Coordinator(s)	Dr. Neetu Sardana, Astha Singh			
	Teacher(s) (Alphabetically)	Astha Singh, Dr. Neetu Sardana			

COURSE C	DUTCOMES	COGNITIVE LEVELS
C430.11.1	Understand standard Information retrieval models, indexing mechanism, web technologies used for designing an intelligent web.	Level-2 (Understanding)
C430-11.2	Apply query processing techniques for content extraction in varied Information retrieval systems.	Level-3 (Applying)
C430-11.3	Analyze the searching algorithms for Information Retrieval.	Level-4 (Analysis)
C430-11.4	Evaluate the IR system results using different metrics for knowledge base modeling and parameter estimation.	Level-5 (Evaluating)
C430-11.5	Design intelligent application for solving real world information retrieval problems	Level-6 (Creating)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Information Retrieval	Theory of information retrieval, Information retrieval on Data and information retrieval on the Web Information retrieval tools and their architecture.	4
2.	Boolean Retrieval & Index Construction	An example information retrieval problem, Processing Boolean queries, the extended Boolean model versus ranked retrieval, Blocked sort based, single pass in Memory, Distributed and dynamic Indexing.	6
3.	Dictionary and tolerant retrieval	Wild card queries, Spelling correction, Phonetic correction	4
4.	Scoring Term weighting and the vector space model	Term frequency and weighting, Vector space model, Variant TF-IDF Scoring, Probabilistic Model, Language Modeling, Evaluation of IR System	4
5.	Link analysis	Web as graph and Page ranking algorithms	4
6.	Information retrieval tools	Web directory, Search engine, Meta search engines, Web searching and search engine architecture, Searching Algorithms (Fish, Shark etc).	6
7.	Web Crawling	Web Crawler architecture and Web crawling (parallel, distributed and focused web crawling).	6
8.	TaxonomyandOntology	Creating domain specific ontology, Ontology life cycle Semantic Web: Resource description Framework (RDF),	8

	Turtle format, Storing RDF in Databases/files, Language Tags and labels in RDF files, RDF schema and web ontology language (OWL).	
	Total number of Lectures	42
Evaluation Criteria		
Components	Maximum Marks	
T1	20	
T2	20	
End Semester Examination	35	
ТА	25 (Attendance = 5, Assignment & Quiz= 10, Mini	
	Project= 10)	
Total	100 '	

The students in the group of 3-4 will choose one of the information retrieval algorithms such as Index construction, Query Processing, spelling correction, vector space modeling, Link Analysis etc. The chosen algorithm will be applied in context to some application area preferably on some standard dataset taken from the platforms like Kaggle, Github, UCI, KDD etc. Applying these algorithms on standard dataset will enable the students in enhancing their understanding and skills towards Information retrieval.

Ree	Recommended Reading material:		
Tey	Text Books		
1.	Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, "An introduction to Information Retrieval", 2013 Cambridge University Press UP.		
2.	Rijsbergen C. J. 2012," Information Retrieval", 2 nd edition.		
Ref	ference Books		
1.	Salton, G. and McGill, M.J., "Introduction to Modern Information Retrieval", Computer Series. McGraw- Hill, New York, NY.		
2.	ACM Transaction on Internet Technology.		
	·		

SYLLABUS AND EVALUATION SCHEME

Lecture-wise Breakup				
Course Code	16B1NPH732	Semester : ODD Semester VII Session 2023 -2024		
			Month	: July-December
Course Name	Green Energy and Climate Modeling			
Credits	3 Contact Hours 3-0-0			

Faculty (Names)	Coordinator(s)	Dr. Prashant Chauhan – JIIT 128
	Teacher(s)	Dr. Prashant Chauhan

	JTCOMES	COGNITIVE LEVELS
C401-6.1	Recall the basic information about different energy resources, reserves and define the problem with fossil fuel	Remember Level (Level 1)
C401-6.2	Explain green house effect, modelling of temperature measurement and physics behind the global warming	Understand Level (Level 2)
C401-6.3	Demonstrate the basic principles and designs of different solar collectors and concentrators, and identify the best design/material/location to absorb maximum solar energy	Apply Level (Level 3)
C401-6.4	Analyse the potential and the output of renewable energy source using different designs under different conditions/location	Analyzing Level (Level 4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Man and energy, world and Indian production /reserve of conventional energy sources, alternative energy sources.	02
2.	The greenhouse effect	Physics behind greenhouse effect, Blackbody radiation, layer model depending on energy flux and temperature at earth surface, radiation effect on Greenhouse gases, temperature structure of the atmosphere, Heat, pressure, wind, feedback mechanism. Carbon Cycle and Climate, Fossil Fuels, Effect of Conventional energy sources.	10
3.	Solar energy	Nature and availability of radiation, estimation of solar energy radiation. Effect of receiving surface, location and orientation, heat transfer consideration relevant to solar energy, Characteristics of materials and surface used in solar energy	06

		absorption. Device for thermal collection and storage	
4.	Ocean Energy	Tidal energy, and its characteristics, tidal energy estimation, important component of tidal energy plant, single basin plant, double basin plant, turbine, tidal power plant development in India, wave energy, design parameters of wave energy plant, introduction and working of ocean thermal energy conversion,	06
5.	Wind Energy and Bio Mass energy	Introduction to wind energy, Nature, power, forces, conversion and estimation. Components of wind energy system types, safety and environment, Introduction to bio mass energy, conversion and utilization of biogas plants and gas fiers	10
6.	Fusion Energy	Basics of DT fusion, Magnetic confinement fusion, laser inertial fusion, present status of fusion reactors and future scope at international and national level	6
		Total number of Lectures	40
Evaluation	Criteria		
Components T1 T2 End Semester Examination TA Total		Maximum Marks 20 20 35 25 [Attendance (5 M), Class Test/Quizzes (6 M), Internal ass Assignments in PBL mode (10 M)] 100	sessment (04M)

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Global Warming : Understanding the forecast by David Archer, Wiley			
2.	Kothari D.P. renewable energy resources and emerging technologies, Prentice of India			
Rai 3.	G D, Non-conventional energy sources, Khanna Publishers			
C S 4.	Duffie J A & Beckmann W A, Solar engineering of thermal process, Wiley-International Publication			

Project based Learning: Students will be given small projects in groups to enhance their understanding on the topics of energy issues including production, reserve, limitation and issues of conventional energy sources, alternative energy sources like solar energy, wind energy, ocean energy and fusion energy. Students will be asked to submit the report of given project and give presentations of the same.

Detailed Syllabus

Subject Code	21B12CS411		Semester odd		emester: B.Tech 7 th Semester Session ODD 023		
			M		Ionth from August to December		
Subject Name	Big Data with Had	rith Hadoop and Spark					
Credits	3		Contact Hours		3-0-0		
Faculty	Coordinator(s)	Prof. Shikha Mehta, Dr. Parmeet Kaur					
(Names)	Teacher(s) (Alphabetically)	Pro	Prof. Shikha Mehta, Dr. Parmeet Kaur				

COs	Description	Cognitive Level (Bloom Taxonomy)			
	Understand Big data challenges and need of Big data storage and computation tools	Understand Level (Level 2)			
C430-13.1					
	Apply Hadoop Map Reduce and Spark to solve big data problems.	Apply Level (Level 2)			
C430-13.2					
C430-13.3	Analyze big data using Pig, Hive, HBase, Spark tools for solving real world problems. Analyze Level (Level 4)				
C430-13.4	Assess Hadoop and Spark for big data analytics Evaluate Level (Level 5)				
C430-13.5 Implement big data applications using Hadoop and Spark Create Lev (Level 6)					

- 11								í
- 11								1
- 11								í
- 14					 			í

Introduction To Big Data And Hadoop Map Reduce Hadoop Eco System – Pig Hadoop Eco System – Hive	Digital Data Type, Introduction To Big Data, History Of Hadoop, Apache Hadoop And The Hadoop Ecosystem,About Map Reduce, Analysing Data With Hadoop, Data Flow, Combiner Functions, Hadoop Streaming Using Python.Introduction To Pig, Execution Modes Of Pig, Comparison Of Pig With Databases, Pig Latin, User Defined Functions, Data Processing Operators.Apache Hive, Hive Sql Over Hadoop Mapreduce, Hive Shell, Hive Services, Hive Metastore, Comparison With Traditional	4 4 4 4
Hadoop Eco System – Pig Hadoop Eco	Combiner Functions, Hadoop Streaming Using Python.Introduction To Pig, Execution Modes Of Pig, Comparison Of Pig With Databases, Pig Latin, User Defined Functions, Data Processing Operators.Apache Hive, Hive Sql Over Hadoop Mapreduce, Hive Shell,	
System – Pig Hadoop Eco	With Databases, Pig Latin, User Defined Functions, Data Processing Operators.Apache Hive, Hive Sql Over Hadoop Mapreduce, Hive Shell,	4
	Databases, Hiveql, Tables, Querying Data And User Defined Functions.	5
Hadoop Eco System- Hbase And Big Sql	Nosql DB Hbase, Hbase Architecture, Hbase Shell, Data Model, Hbase Versus RDBMS	4
Apache Spark	Introduction Of Spark, Components, Hadoop Ecosystem Vs Spark, Running Scala In Spark Shell. Spark Web Ui	4
Scala	Scala Installation, Functional Programming, Programming With Scala, Logical Operator, Type Inference Classes, Functions In Scala,	4
Spark Rdd	Resilient Distributed Datasets (RDD), RDD In Spark, RDD Operations	4
Spark Sql	Spark SQL Introduction, Dataframes, Spark SQL Architecture, Data Formats, Dataframe Using SQL Query, RDD Vs Dataframes VS Datasets	4
Sparkmllib	Spark Mllib Modeling Big Data, Analytics In Spark, ML: Supervised, Unsupervised, Spark Mllib Use For ML Modeling , Spark Graphx	5
	Total number of Lectures	42
n Criteria		
nts ster Examination	Maximum Marks 20 20 35 25 (Attendance = 10, Mini-Project = 15)	
	Scala Spark Rdd Spark Sql Sparkmllib Criteria ts	Running Scala In Spark Shell. Spark Web Ui Scala Scala Installation, Functional Programming, Programming With Scala, Logical Operator, Type Inference Classes, Functions In Scala, Spark Rdd Resilient Distributed Datasets (RDD), RDD In Spark, RDD Operations Spark Sql Spark SQL Introduction, Dataframes, Spark SQL Architecture, Data Formats, Dataframe Using SQL Query, RDD Vs Dataframes VS Datasets Spark Mllib Spark Mllib Modeling Big Data, Analytics In Spark, ML: Supervised, Unsupervised, Spark Mllib Use For ML Modeling , Spark Graphx Total number of Lectures Criteria Maximum Marks 20 20 ts Maximum Marks 20 20 ere Examination 35

Project Based Learning: Students will form a group of 3-4 students. Students will analyze a complex Big data computing problem and apply Hadoop Ecosystem design and programming using spark concept to provide effective solution to a Big Data Specific Problem Statement. Students will read 4-5 research papers/ Industrial Projects in which these concepts have been used to handle real scenario problems. Theme/topic of project is chosen based on studied literature. Understanding usage of appropriate Hadoop and Spark technique, then implementation of the project using selected technologies and evaluating its effectiveness will help students to know the concept of applying the big data technologies in real life case scenario.

Text	Books Books					
1.	Tom White "Hadoop: The Definitive Guide" Third Edit on, O'reily Media, 2012					
2.	Karau, H., Konwinski, A., Wendell, P., & Zaharia, M. (2015). Learning spark: lightning-fast big data analysis. " O'Reilly Media, Inc.".					
Refe	rence Books					
1.	Seema Acharya, Subhasini Chellappan, "Big Data Analytics" Wiley 2015.					
2.	Chambers, B., & Zaharia, M. (2018). Spark: The definitive guide: Big data processing made simple. " O'Reilly Media, Inc.".					
3.	Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007.`					
5.	Glen J. Myat, "Making Sense of Data", John Wiley & Sons, 2007					
6.	Michael Mineli, Michele Chambers, Ambiga Dhiraj, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses", Wiley Publications, 2013					
7.	Paul Zikopoulos ,Dirk DeRoos , Krishnan Parasuraman , Thomas Deutsch , James Giles , David Corigan , "Harness the Power of Big Data The IBM Big Data Platform ", Tata McGraw Hill Publications, 2012					

17B1NBT732 **Course Code** Semester Odd Semester 2023 Session 2023-2024 (specify Odd/Even) Month from July **Course Name** Healthcare Marketplace **Contact Hours** Credits 3 3 Faculty (Names) **Coordinator(s)** Dr. Shweta Dang Teacher(s) Dr. Indira P. Sarethy, Dr. Shweta Dang (Alphabetically)

COURS	E OUTCOMES	COGNITIVE LEVELS
CO1	Explain healthcare market, drugs and devices, role of various stakeholders	Understand Level (C2)
CO2	Apply related intellectual property laws and regulatory approvals for healthcare sector	Apply Level (C3)
CO3	Analyze the various business models/ innovations in the healthcare industry	AnalyzeLevel (C4)
CO4	Compare economic aspects pertaining to the sector	AnalyzeLevel (C4)

Module No.	Title of the Module Topics in the Module			
1.	Introduction to Healthcare markets	About the various Regulatory bodies for approval of new medical innovations2 [CO1] Level 2 Understanding	02	
2.	Clinical Pharmacokinetics and Clinical trials for new Drugs	Biologic sampling techniques, analytical methods for the measurement of drugs and metabolites, and procedures that facilitate data collection and manipulation. Clinical Trials: PhI, II, III and IV[CO2] Level 3 Applying	05	
3.	Regulatory approval pathways	Preclinical studies US and EU filings IND submissions, NDA and BLA Submissions, Non-patent exclusivities, data and market exclusivities cost analysis[CO2] Level 3 Applying	06	
4.	Patents of drugsand devices, Entryfor generics inhealthcaremarkets	Role of patents on new drugs and devices, Ever-greening of patents, Product and Process patents. Hatch Waxman act and Introduction of generics and resulting cost reduction, Orange book (FDA) and related case studies.[CO2] Level 3 Applying	08	
5.	Economics of healthcare	Stakeholders in healthcare- doctors, hospitals and insurers and theirroles, technology and human capital[CO1] Level 2 Understanding	7	
6.	Medical For medical devices, pharmaceuticals, genetic diagnostic technology and tests and their regulations[CO3]Level 4 Analyzing			

NOTE: All the entries (...) must be in Times New Roman 11.

7.	Indian hospital sector	Various players – government, private, PPP models, strategic perspectives, case studies[CO3] Level 4 Analyzing	4
8	Innovations in the marketplace	Health to market innovations[CO3] Level 4 Analyzing	4
9	Healthcare informatics	e-health, collection of health data, data processing, evaluation, health information systems, case studies[CO3] Level 4 Analyzing	2
	1	Total number of Lectures	42

Total number of Lectures

Project Based Learning: Students analyze the sitehttps://pmjay.gov.in/about/pmjay, understand the following sections:

- Coverage under PM-JAY
- Implementation Model
- Financing of the Scheme

And represent them in one comprehensive diagram, integrating all the above components. This helps them in understanding recent innovations in healthcare market and integration of healthcare informatics.

Evaluation Criteria	
Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
ТА	25 (PBL, Assignments 1, 2, 3, Attendance)
Total	100

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)						
1.	https://www.who.int/nationalpolicies/processes/stakeholders/en/						
2.	Conflict of interests. I. Lo, Bernard. II. Field, Marilyn J. (Marilyn Jane) III. Institute of Medicine (U.S.). Committee on Conflict of Interest in Medical Research, Education, and Practice. IV. National Academies Press (U.S.), 2009						
3.	Research papers and online resources						

1								
Course Code	17B1NBT733	Semester Odd		Semester VII Session 2023 -2024				
		(specify Odd/Even)		Month	onth from July-December			
Course Name	Stress: Biology, Behaviour and Management							
Credits	3 (3-0-0)		Contact H	Hours	3			

Faculty (Names)	Coordinator(s)	Vibha Gupta
	Teacher(s) (Alphabetically)	Vibha Gupta

COURSE O	COURSE OUTCOMES		
C401-16.1	6.1 Explain the biological basis of stress. Understand L		
C401-16.2	Relate cognitive processes and stress management.	Understand level (C2)	
C401-16.3	Apply acquired knowledge in understanding and adjusting to different people and situations.	Apply level (C3)	
C401-16.4	Improve quality of life by reducing stress.	Create level (C6)	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	The concept of Stress - Major stressors vs. routine hassles ; Major types of Stressors - Occupational Stressors; Organization Stress; Environmental Stressors; Happy Interactive Class (HIC)	3
2.	Scientific Foundations of Stress	HIC 1, The Nature of Stress; Human Physiology; Stress and Relaxation Responses; Stress and Disease	5
3.	Body Systems activated by stressors	HIC2, Nervous System, Endocrine System, immune system, Cardiovascular system, Gastrointestinal System, Muscles	9
4.	Cognitive Psychology	HIC3, Theoretical models: psychodynamic, behavioral, and cognitive; Thoughts, Beliefs and Emotions: Behavioral Patterns; Self-concept and Self-esteem; Stress emotions - Anger and Fear; Personality Traits – Stress prone and Stress resistant	11
5.	Social Psychology	HIC4, Family and Culture; Demands and Responsibilities; Relationships; Verbal and Non-verbal Communication; Human Spirituality	3
6.	Stress and the Human Environmental Interactions	HIC4, Time; Body Rhythms; Weather and Climate; Nutrition; Exercise; Drugs and Addictions; Violence and Post Traumatic Stress	3
7.	Happy Interactive Class (HIC) related to Stress management	HIC1 - DIY Strategies- Exercise and Health; HIC2 - Journal Writing/Music and Art Therapy; HIC3- Humor and Comic Relief; HIC4- Meditation/Mindfulness/Belly Breathing/Visual Imagery/Progressive Muscle Relaxation	HICs to be delivered in the modules 1-6

TA Total		25 (Project, Quiz and class discussions) 100	
End Ser TA	nester Examination	35 25 (Project Ouiz and along discussions)	
T2		20	
T1		20	
Evaluat Compo	tion Criteria nents	Maximum Marks	
		Total number of Lectures	40
8. The adaptive brain		Neuroplasticity – positive adaptation to stress	2
	techniques and therapeutic strategies	Psychological interventions; Developing Cognitive Coping Skills; Creative Problem Solving (case studies);	4

	ommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, rence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	George Fink "Stress: Concepts, Cognition, Emotion, and Behavior: Handbook in Stress Series; Volume 1; Academic Press; 2016
2.	Jeanne Ricks "The Biology of Beating Stress"Kindle Edition; 2014
3.	Jerrold S. Greenberg "Comprehensive Stress Management" Tata McGraw-Hill Edition; Tenth Ed., 2009
4.	Brian Luke Seaward "Managing Stress: Principles and Strategies for Health and Well-Being" Sixth Ed., Jones and Bartlett Publishers, 2009
5.	Saundra E. Ciccarelli, and Glenn E. Meyer "Psychology" South Asian Edition; Published by Pearson Education (2008); ISBN 10:8131713873 / ISBN 13: 9788131713877

Project Based Learning : to identify factor responsible for stress and steer 2 people on a joufull path by becoming their "Happiness Coach .

Course Description (17B1NMA731)

Course Co	ode	17B1NMA73	31	Semester Od	d	Semeste	er VII	Session	2023 -2024
				(specify Odd/	Even)	Month	from J	uly 2023-D	Dec. 2023
Course Na	ime	Applied Line	ar Algeł	ora			_		
Credits 3					Contact I	Iours	3-0-0		
Te		Coordinato	r(s)	Dr. Ram Surat	Chauhan				
		Teacher(s) (Alphabetica	ally)	Dr. Ram Surat	Chauhan				
COURSE	OUTCO	DMES :After p	oursuing	the above ment	ioned cours	e, the stud	lents		
will be able	e to:							COGNII	TIVE LEVELS
C401-7.1	-	n basic concep ner product spa		tor spaces, metr	ric spaces, n	ormed sp	aces,	Understar	nding level (C2)
C401-7.2	1	the problems rectors and its a		linear transform ons.	nations, eige	envalue a	nd	Applying	Level (C3)
C401-7.3	1		-	norms, orthogon ated problems.	alization, bi	ilinear, an	d	Applying	Level (C3)
C401-7.4	-			iqueness of solu f matrices and li	•			Analyzing	g level (C4)
Module	Title o	of the	Topics	in the Module					No. of
No.	Modu	le							Lectures for
									the module
1.	1	Yector Space and bimensionField, Vector Space, Vector subspace, linear dependence and independence, Span of a set, Dimension of a vector space, Direct Sum and Complement				7			
2.	Linear Transf	ormation I	Linear Transformation and its algebra, and its matrix representation, homomorphism, isomorphism, rank and null subspace, rank-nullity theorem, Solution of a system of Linear Equations, Determinant					7	
3.	Linear Transf	ormation II	-	Change of basis, Inverse of a linear transformation, Linear functional, transpose				, Linear	5
4.	Inner I Metric	Product and	Orthor	nner product space, Metric and normed spaces. Orthonormal basis, Orthogonal Subspaces, Gram-Schmidt rthogonalization.				8	
5.		Values and Vectors	diagon	values and Eiger alization, Simila symmetric, orth es	arity Transf	ormation,	Eigen	-	9

6.	Applications of	Bilinear and Quadratic forms, Positive definite matrices,	6		
	Linear Algebra	Norm of a matrix, Condition number, Application to find			
		solutions of ordinary differential equations			
Tota	l number of Lectures		42		
Eval	uation Criteria				
Com	ponents	Maximum Marks			
T1		20			
T2		20			
End	Semester Examination	35			
TA		25 (Assignments, Quizzes)			
Tota	1	100			
Proj	ect Based Learning: Each	student in a group of 4-5 students will apply the concepts of eig	genvalues and		
eiger	vectors to solve the ordina	ry differential equations arising in various real-life problems.			
Reco	mmended Reading mater	ial: Author(s), Title, Edition, Publisher, Year of Publication etc	c. (Text books,		
Refe	rence Books, Journals, Rep	orts, Websites etc. in the IEEE format)			
1.	Hoffman, K and Kunze,	R., Linear Algebra, Fourth Edition, Prentice Hall of India, 20	05		
2.	Strang, G., Linear Algebra and its Applications, 3 rd Ed., 1998				
3.	Noble, B. and Daniel, J., Applied Linear Algebra, Prentice Hall of India, 2000				
4.	Lipshutz, S. and Lipsom	, M. ,Linear Algebra, 3 rd Edition, Schaum Series, 2001			
5.	• • • •	nra, V. P., and Arora, J. L., An Introduction to Linear Algeb	ra, Affilated		
	East-West, 1976				

Applied Numerical Methods (17B1NMA732)

Course Code 17B1N			1A732	Semester - O	dd			ssion 2023-24 2023 - Dec 2023
Course N	lame	Applied	Numerical N	Methods		<u>.</u>		
Credits		3			Cont	tact Hours	3-0-0	
Faculty (Names) Coordi			nator(s)	Dr. Pankaj Ku	mar Sr	ivastava and D	r. Yog	esh Gupta
		Teacher (Alphab	r(s) petically)	Dr. Pankaj Ku	mar Sr	ivastava and D	r. Yog	esh Gupta
COURSI	E OUTCO	OMES		Л				COGNITIVE LEVELS
After purs	suing the	above-me	ntioned cours	se, the students v	will be	able to:		
C401-8.1			ods for roots near algebra.	of non-linear ec	quation	ns, interpolation	n ·	Understanding (C2)
C401-8.2		ons, inter		forsystem of ferentiation, in				Applying (C3)
C401-8.3		e numeric l problems		or finding approx	ximate	solutions of		Analyzing (C4)
C401-8.4		te comput ary value		iques for approx	kimatio	on, initial and		Evaluating (C5)
Module No.	Title of Module		Topics in t	he Module				No. of Lectures for the module
1.	Roots linear Equation							
2.	Interpola and Approxi		Formulae f	or equi-spaced	Lagrange formula with error, points, Divided differences, square approximation			
3.	Numeric Differen and Inte	ntiation		Gauss-Legend	erivatives, Newton-Cote's re quadrature formulae,			
4.	Numerical Linear AlgebraGauss-elimination and LU-Decomposition Methods, Iterative methods: Jacobi and Gauss Seidel Methods and their convergence, Power's method for the largest eigen-value, Jacobiand Householder's methods for eigen-values of real symmetric matrices			t				
5.	Numeric Solution ODE an	ns of	Runge-Kut Finite dif methods, N	ta and predictor ference metho Jumerical solutio ferential equati	correc ds fo ons of	tor methods fo or BVPs, SI parabolic and	nooting elliptic	

Couse Description

Con	ponents	Maximum Marks
T1	-	20
T2		20
End	Semester Examination	35
TA		25 (Quiz, Assignments, PBL)
Tota	al	100
	ect Based Learning: Each he solution of ODE and PD	n student in a group of 4-6 will apply the concepts of numerical methods DE.
	-	rial: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text
		als, Reports, Websites etc. in the IEEE format)
1.		tley P.O., Applied Numerical Analysis, 6 th Ed., Pearson Education, 1999.
1. 2.	Gerald, C.F. and Wheat	
	Gerald, C.F. and Wheat Conte, S.D. and deB 1980.	tley P.O., Applied Numerical Analysis, 6 th Ed., Pearson Education, 1999.
2.	Gerald, C.F. and Wheat Conte, S.D. and deB 1980. Gupta, R.S., Elements Jain, M.K., Iyengar,	tley P.O., Applied Numerical Analysis, 6 th Ed., Pearson Education, 1999. Foor, C., Elementary Numerical Analysis, 3 rd Ed., McGraw-Hill,

Subject Code	17B1NPH731	Semester: Odd		ster: VII Session: 2023-2024 h from: July to December
Subject Name	Introduction to Quantum Information Processing			
Credits	03	С	ontact Hours	03

Faculty	Coordinator(s)	Anirban Pathak and Sudip Kumar Haldar
(Names)	Teacher(s) (Alphabetically)	Anirban Pathak and Sudip Kumar Haldar

COURSE (COURSE OUTCOMES			
C401-5.1	Correlate Quantum Information Processing and their applications in	Remembering (C1)		
	quantum communication and computation.			
C401-5.2	Explain quantum information, Qubit, quantum gates, and quantum	Understanding (C2)		
	circuits. Their applications in quantum computing, quantum			
	cryptography and communications.			
C401-5.3	Demonstrate the use of basic principles in solving various problems	Applying (C3)		
	related to quantum circuits with the use of linear algebra and many			
	algorithms and protocols.			
C401-5.4	Prove and estimate solution of numerical problems using physical	Evaluating (C5)		
	and mathematical concepts involved with various quantum circuits.			
C401-5.5	Design of quantum circuits of desired output for quantum	Creating (C6)		
	cryptography applications.			

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	What is information? Why do we need to know how to manage theinformation growth? Is the information independent of physicallaws used to store and process it? What is the present status of thesubject and how far can we go? Definitions of classical information,Quantum information and their differences.	3
2.	Thermodyna mics and statistical mechanics	Introduction to thermodynamics; First and second law of thermodynamics; Microstates and Macro states; Entropy, Conditional entropy; Entropy as a measure of disorder (upto S = kln omega)	6
3.	Classical theory of	Basic ideas of classical information theory, Measures of information (information content and entropy); Maxwell's Demon;	

	information	Data compression; The binary symmetric channel; error correcting	
		codes; Classical theory of computation; Universal computer; Turing	8
		machine; Computational complexity; Uncomputable functions;	
		Shortcomings of classical information theory and necessity of	
		information theory.	
4.	Introduction to	Basic ideas of quantum mechanics; Probability	
	quantum	interpretation; Measurement problem; Hilbert space;	8
	mechanics	Schrodinger equation.	
5.		Qubit; Quantum gates; No cloning theorem (Why quantum	
		information can't be perfectly copied); Dense coding; Quantum	
	Quantum	teleportation; Quantum data compression; Quantum	
	information	cryptography; The universal quantum computer; Universal gate;	9
		Church-Turing principle; Quantum algorithms; Simulation of	
		Physical systems; Shor's factorization algorithm; Grovers's	
		search algorithm; Experimental quantum information	
		processors; Quantum error correction.	
6.	Computers and	Basic ideas of quantum computers and intelligent machines.	
	Intelligent		4
	machines		
7.	Summary	Summary of entire course and a short of introduction to the	2
		present goals of quantum information technology.	
	·	Total number of Lectures	40

Evaluati	ion Criteria	
Compon	ients	Maximum Marks
T1		20
T2		20
End Sem	ester Examination	35
ТА		25 [Attendance (05 M), Class Test, Quizzes, etc. (06 M),
		Assignments in PBL mode (10 M), and Internal assessment
		(04 M)]
Total		100
Recomm	nended Reading mater	ial: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text
books, R	eference Books, Journa	lls, Reports, Websites etc. in the IEEE format)
1.	Neil Gershenfeld, T	he Physics of information technology, Cambridge University Press.
2.		tum computing, Springer Verlag.
3.		ysics 229: Quantum Information and Computation, John Preskil
	· · ·	altech.edu/people/preskill/ph229/#describe
4.	Andewsteane, Quant	um computing, Rep. Prog. Phys. 61, 117-173 (1998) or quant-ph/9708022
	http://xxx.lanl.gov	
5.	^	inciples of Quantum mechnaics, Oxford University Press.
6.	•	Information Theory, Inference and Learning Algorithm.
7.		n Physics and Computers, Contemporary Physics, 37 , 375-89 (1996).
8.	C.H. Bennett, Quant	um Information and Computattion, Physics Today, Oct., 1995, 24-30 (1995).
9.	A. Ekert, P. Hayden,	H Inamori, Basic concepts in quantum computation, quant-ph/ 0011013.
10.	D. Gottesman and H	K Lo, From quantum cheating to quantum security, Physics Today, Nov.,

	2000.
11.	J Preskill, battling decoherence: the fault – tolerent quantum computer. Physics Today, 24-30, June
	1999.
12.	A. M. Steane and W. Van Dam, Physicists triumph at guess my number, Physics Today, 35-39, Feb.
	2000.
13.	V. Vedral and M. B. Plenio, Basics of quantum computation, Prog. Quant. Electron, 22 1-39 (1998)
14.	A. Zeilinger, Fundamentals of quantum information, Physcs World, 11, March, 1998.

Project based learning: Students will be given a task to design a multi qubit quantum circuit by their own. This design will help students in understanding the basic working of quantum gates, quantum cryptography and computation. It will improve their analytical skills and problem-solving capability and help them in getting jobs in the quantum computation industries.

Course Code	17B1NPH732	Semester: ODD		Semester: 7 th Session: 2023 -2024 Month from July to December	
Course Name	Nanoscience and Tec	hnology			
Credits 3			Contact Hours		3

Faculty (Names)	Coordinator(s)	Prof. Navendu Goswami
	Teacher(s) (Alphabetically)	Prof. Navendu Goswami

COURSE	OUTCOMES	COGNITIVE LEVELS
C401-4.1	Define the Nanoscience and Technology and to know about various other terminologies and developments involved with Nanoscience and Technology	Remembering (C1)
C401-4.2	Classify the nanomaterials depending on the nature of dimensionalities, type of materials classes and explain the basic concepts of nanomaterials	Understanding (C2)
C401-4.3	Apply the concepts of Nanoscience for solving the theoretical and numerical problems	Applying (C3)
C401-4.4	Determine the properties of nanomaterials through suitable characterization tools	Analyzing (C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction	Development of nanoscience and nanotechnology, naturally occurring nanomaterials, Crystallinity of nanomaterials, Metallic nanostructures, Semiconductor nanostructures Magnetic nanomaterials, Chemically assisted nanostructures, Growth in 2-D nanostructures, Carbon nanomaterials	10
2.	Properties of Nanomaterials	Surface to volume ratio, Surface states and energy, Nanoscale oscillators, Confinement in nanostructures, Density of States and number of states of 0-, 1-, 2-, 3- dimensional systems, Change in Band structure and gap, Energy levels, confinement energy and emission in nano, Fluorescence by QDs, Concept of Single electron transistor	5
3.	Nanomaterials Synthesis	Introduction to synthesis techniques, Top down and bottom up approach, Biological methods, Sol-gel method, Nucleation and growth, Ball Milling technique, Chemical vapor deposition, Physical Vapor deposition: Concept of Epitaxy and sputtering, Basics of Photolithography and its limitations, Soft Lithography and Nanolithography	10
4.	Characterization of Nanomaterials	Resolving power (Rayleigh and other criteria) of microscopes and their limitations for nanostructure measurements, Concept of Far and Near field and modification by NSOM, Basic principle, Design of setup, Theory and working, Characterization procedure, result analysis, Merits/demerits of SEM, TEM, STM, AFM	5

5.	Application of Nanomaterials	Nanoelectronics,Nanobiotechnology,Catalysisbynanoparticles,Quantum dot devices,Quantum well devices,High Tc nano-Superconductors,Nanomaterials for memoryapplication,CNT based devices,MEMS and NEMS	10
		Total number of Lectures	40
Evaluatior	n Criteria	, ,	
Componer	nts	Maximum Marks	
T1		20	
T2		20	
End Semes	ter Examination	35	
ТА		25 [PBL (10 M), 2 Quiz (6 M), Attendance (5 M) and Internal Assessment (4 M)]	
Total		100	

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	Nanostructures and nanomaterials: synthesis properties and application, Guozhong Cao, Imperial college press, London.					
2.	Introduction to nanotechnology, Charles Poole et al J John Wiley & Sons, Singapore.					
3.	<i>The Handbook of Nanotechnology: Nanometer Structures, Theory, Modeling, and Simulation</i> , A. Lakhtakia, Spie Press USA.					
4.	Springer Handbook of Nanotechnology, Edited by B. Bhushan, Springer Verlag.					

Project based learning: Students would work on a project of their choice in the field of Nanoelectronics, Nanobiotechnology, Catalysis by nanoparticles, Quantum dot devices, Quantum well devices, High Tc nano-Superconductors, Nanomaterials for memory application, CNT based devices, MEMS and NEMS. In such projects students can apply the basic concepts of Nanoscience for solving theoretical and numerical problems. They can also work on analysis of a nanomaterial to determine its properties through suitable characterization tools such as SEM, TEM, AFM etc. The learning gained through this project would consolidate the understanding and provide skills of analysis and application in Nanoscience and Technology and thereby providing the employability prospects in the organizations and industries involved in the research and development of nanomaterials synthesis and characterizations, nanoelectronics, nanobiotechnology/nanomedicine etc.

Course Description Detailed Syllabus

Course Code	18B12CS428	Semester: ODD		Semester : VII Session 2023-2024 Month: from July- Dec, 2023	
Course Name Introduction to Deep Learning					
Credits	3		Contact Hours		3-0-0

Faculty (Names)	Coordinator(s)	Dr. Ashsish Mishra, Dr. Payal Khurana Batra
	Teacher(s) (Alphabetically)	Dr. Ashsish Mishra, Dr. Payal Khurana Batra

Sr. No.	Description	Cognitive Level (Bloom's Taxonomy)
C430-3.1	Understand the basic concept of machine learning and deep learning.	Understanding (Level-2)
C430-3.2	Understand the basic theory of ANN, probability theory, error minimization, and regularization techniques	Understanding (Level-2)
C430-3.3	Apply with the Convolution Neural Networks for image recognition and Computer Vision.	Apply (Level-3)
C430-3.4	Apply Recurrent Neural Networks and LSTM for temporal data	Apply (Level-3)
C430-3.5	Assess the various deep learning techniques on real-time problems.	Evaluate (Level-5)

Sr. No.	Module	Торіс	No. of Lectures
1.	Introduction	Course overview: Deep Learning Overview; Deep Learning successes; Deep Networks versus Shallow Networks;	02
2.	Mathematics for Machine Learning	Gradient descent, Linear Regression, Logistic Regression; Continuous and discrete distributions; Maximum likelihood estimation, Expectation Maximization; Principle Component Analysis;	06
3.	Neural Network Fundamentals	Neural networks: Feed-Forward Networks, MLP, Back propagation Networks; Activation Functions;	04
4.	Deep Neural Network-1	Deep learning strategies: GPU training, Regularization Techniques; Loss and Cost functions.	04
5.	Deep Neural Network-2	Convolutional neural networks: Image analysis with ANN, CNN;	05
6.	Deep Neural Network-3	CNN Architectures LeNet, AlexNet, GooleNet, VGG Net, ResNet: Comparative analysis	05
7.	RNN-1	Recurrent Neural Networks: Architecture and Application; Variants of RNN Architectures: LSTM, GRU, Bi- LSTM.	06
8.	RNN-2	Attention in DL, Self Attention, Soft vs Hard Attention, Global vs Local Attention, Sequence to sequence model: Encoder-Decoder, Transformer, Transformer XL	06
9.	Unsupervised Deep learning	Unsupervised deep learning (Autoencoders)	04
		Total Lectures	42

Project based learning: Each student in a group of 3-4 will have to develop a mini project based on Deep Learning Models. The datasets ranging from object detection problem to natural language processing will be provided for implementing the models. Project development and its presentation will enhance the knowledge and employability of the students in IT sector.

Evaluation Criteria				
Components	Maximum Marks			
T1	20			
T2	20			
End Semester Examination	35			
ТА	25			
(Attendance = 10, , Quiz-10 Marks and PBL = 5 Marks)				
Total	100			

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

Text	Text Books			
1.	Nikhil Buduma, Fundamentals of Deep Learning, Shroff Publishers, 2018			
Refe	Reference Books			
1.	Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT Pess , 2017			
2.	FRANÇOIS CHOLLET, Deep Learning with Python, Manning Publications, 2018			

Course Code	19B12CS423	Semester ODD (specify Odd/Even)			er: VII Session 2023 -2024 from July 2023-Dec 2023
Course Name	Computing for Data S	Science			
Credits	3-0-0		Contact Hours		3
Faculty (Names) Coordinator(s)		Dr. Ankita Verma			
	Teacher(s) (Alphabetically)	Dr. Ankita Ver	rma		

COURSE	OUTCOMES	COGNITIVE LEVELS
C431-7.1	Understand the basic concepts, methods, and mathematics relevant to computational techniques for data science.	Understand (Level 3)
C431-7.2	Apply descriptive and inferential statistics for data analysis.	Apply (Level 3)
C431-7.3	Develop and apply advanced and associated computing techniques and technologies for data analysis.	Apply (Level 3)
C431-7.4	Compare the performance of multiple methods and models, recognize the connections between how the data were collected and the scope of conclusions from the resulting analysis, and articulate the limitations of formal inference and modeling.	Analyze (Level 4)
C431-7.5	Evaluate strategies for constructing models and can use different measures of model fit and performance to assess models.	Evaluate (Level 5)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Data Science	Characteristics & Evolution of data, Data Science Process, Types & Levels of data, Datafication, Steps of Data Science, Central Tendency, Measure of Dispersion, Data Munging, Feature Engineering	7
2.	Statistical Methods in Data Science Sampling of data, CorrelationData Distribution (Bernoulli, Uniform, Binomial, Normal, Poisson, Exponential), Mathematical Statistics, Inferential Statistics, Descriptive Statistics, Random Variable, Probabilistic Statistics, Probabilistic Statistics,		7
3.	Computing techniques for Data Science	Regression, Mapping Problem to Machine Learning Task, Memorization Method, Generalized Additive Models, Time-Series Model, Predictive Modeling, Fuzzy C Means Clustering, Ensemble Techniques, Outlier Detection.	10
4.	Technologies & Tools in Database Analytics	SQL Essentials for data science, String Pattern, Ranges, Sorting & Grouping Result Set, working with multiple tables, accessing database using R/Python, Database Text Analysis, User defined Functions & Aggregates, MADlib, Tools & Techniques for unstructured data.	5

5.	Statistical Methods	Hypothesis Testing, Difference of Means, Significance	6		
for Evaluation		Level and P-Value, Test Statistics (Z-test, ANOVA, T-Test,			
		Redundancy Test), Bias Variance Trade off, Cross			
		Validation			
6.	Exploratory Data	Visualization before analysis, Dirty Data, Visualizing single	5		
	Analysis & Data	and multiple variables, summary statistics of EDA, Data	Ũ		
	Science Process	Exploration versus Presentation, Real time case study,			
		Tools & Techniques			
7.	Data Science &	Privacy, Security & Ethics, Next generation Data Scientist	2		
	Ethical Issues		2		
Total number of Lectures					

objective of the course is to gain the knowledge about the data science. To fulfill the objective of this course student needs to learn and apply the data science concept by using Python programming languages on computer science problem. Students need to consider trending research problems and should apply statistical analysis and machine learning solutions on them. Understanding the core concept and statistical knowledge helps the students in enhancing their expertise.

Evaluation Criteria

Components	Maximum Marks					
T1	20					
T2	20					
End Semester Examination	35					
TA (Tutorials, regularity & As	TA (Tutorials, regularity & Assignments) 25 (Assignments & Attendance)					
	(Attendance= 10					
Internal assessment & Assignment in PBL mode = 15)						
Total	100					

	Recommended Reading material: Text Books				
1.	Haider, M. (2015). Getting Started with Data Science: Making Sense of Data with Analytics. IBM Press.				
2.	Dietrich, D. (Ed.). (2015). Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data. Wiley.				
3.	Trevor, H., Robert, T., & JH, F. (2009). The Elements of Statistical Learning: Data Mining, Inference, And Prediction.				
Refe	Reference Books				
4.	Grus, J. (2015). Data Science from Scratch: First Principles with Python. O'Reilly Media, Inc.				
5.	Taylor, J. K., & Cihon, C. (2004). Statistical Techniques for Data Analysis. Chapman and Hall/CRC.				
6.	Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press.				
7.	Zumel, N., & Mount, J. (2014). Practical Data Science with R. Manning Publications Co				
8.	Saltz, J. S., & Stanton, J. M. (2017). An Introduction to Data Science. SAGE Publications.				

Course Code	20B12PH411	Semester ODD		Semeste	er 7 th Session 2023 -2024
				Month	from July to December
Course Name	SUPERCONDUCTI	NG MATERIALS, MAGNETS AND DEVICES			
Credits	3		Contact Hours		3

Faculty (Names)	Coordinator(s)	Dr. Dinesh Tripathi
	Teacher(s) (Alphabetically)	NA

COUR	SE OUTCOMES	COGNITIVE LEVELS
C401- 13.1	Define unusual properties exhibited by superconducting materials and how these properties are important in the development of superconducting Devices.	Remember Level (Level 1)
C401- 13.2	Explain the theories of superconductivity, the basic and operating parameters of superconductors, their classifications and design limitations for superconductor's applications-devices.	Understand Level (Level 2)
C401- 13.3	Solve the various issues related to fabrication of superconducting wires, tapes, design of superconducting magnets and devices.	Apply Level (Level 3)
C401- 13.4	Examine the potential use of low Tc and high Tc superconductors for designing both small and large scale applications.	Analyze Level (Level 4)

Modu le No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Basic properties of Superconducting materials	Historical review, the state of zero resistance, Perfect Diamagnetism, Meissner effect, London's theory, Penetration depth, Concept of coherence length and origin of surface energy, Intermediate and mixed states, Critical currents and critical fields, Outlines of B-C-S theory, concept of energy gap, Levitation force of superconductors, Tunneling in superconductors: Gaiever tunneling and Josephson tunneling	10
2.	Classifications & synthesis of Superconducting materials	Type I and Type II superconductors, Classification of superconducting materials, Conventional superconductor: metals (Pb, Nb, Ti etc.), metal alloys (NbTi, Nb3Sn etc.) and Inter-metallic superconductors (MgB2); Non-conventional Superconductors: Oxide based superconductors (BSCCO, YBCO), iron pnictides superconductors, Fabrication of superconducting wires & tapes.	10
3.	Design of Superconducting magnet	Flux flow, Flux pinning, Pinning force, Magneto-thermal Instabilities in Type II superconductors, Flux Jumps, Stabilization Criterion: Cryostatic and dynamic stabilization, Manufacture of long length superconducting multifilamentary wires, Design and fabrication of superconducting magnets, Magnetic field calculations, current leads,	12

		Persistent switches, and superconducting magnet energization.	
4. Superconducting devices Interference Devices (SQUIDS) Switches, Infrared detectors Sup		Josephson junction in magnetic field, Superconducting Quantum Interference Devices (SQUIDS) and its applications, Superconductive Switches, Infrared detectors Superconducting energy storage system (SMES), Fault current limiters (SFCL), Maglev trains	8
		Total number of Lectures	40
Evaluat	tion Criteria		
Compo	onents	Maximum Marks	
T1		20	
T2		20	
End Ser	mester Examination	35	
ТА		25: Quizzes (7 marks), Attend. (7 marks), PBL (6 marks) and class performance (5 marks)	5
Total 100			

Project based learning: To make a better understanding about the subject, groups of 4-5 students will be formed and a project on materials and applied superconductivity viz. synthesis technique of superconducting materials, fabrication of superconducting wires and tapes, design of superconducting magnet, SQUID, SFCL, SMES, IR detector, Superconducting switches, Maglev etc. will be allotted to each of the groups. The students will collect all the information's and understand about the basic principle, fabrication process and current research activities going on in the particular field. The students will also be encouraged to explore the field and create interactive simulations based on these devices.

Reco	Recommended Reading material:			
1.	Roseins & Rhodrih, Introduction to Superconductivity, 2 nd Edition, Pergamon Press plc			
2.	Vladimir Z. Kresin & Stuart A. Wolf, Fundamentals of Superconductivity, Springer Science & Business Media			
3.	Williams, Applied Superconductivity, Academic press New York.			
4.	M. N. Wilson, Superconducting Magnet Design (Monographs on Cryogenics), Clarendon Press, Oxford Science Publications			

Course Code	21B12CS412	Semester Odd (Specify Odd/Even)			emester VII Session 2023 -2024 Ionth: July 2023	
Course Name	Cryptography and its Applications					
Credits	ts 3		Contact H	Iours	3-0-0	

Faculty (Names)	Coordinator(s)	Dr. Sangeeta Mittal, Dr. Kedar Nath Singh
	Teacher(s) (Alphabetically)	Dr. Kedar Nath Singh, Dr. Sangeeta Mittal

COURSE	OUTCOMES	COGNITIVE LEVELS
C430-12.1	Define the principles of cryptography along with the categorization of cryptographic algorithms and its applicability into various allied areas.	Remember Level (Level 1)
C430-12.2	Verify the feasibility and applicability of different symmetric cryptography, hash and MAC algorithms in distributed applications.	Understand Level (Level 2)
C430-12.3	Apply number theory for construction of asymmetric cryptography, Diffie Hellman Exchange and digital signatures applications.	Apply Level (Level 3)
C430-12.4	Analyse suitability of public key encryption RSA, El Gamal and ECC for securing distributed applications.	Analyze Level (Level 4)
C430-12.5	Apply multiparty secret sharing and zero knowledge techniques for data sharing among partially trusted parties	Analyze Level (Level 4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to cryptography	Historical ciphers along with their cryptanalysis, rigorous versus heuristic approaches; Cryptography in modern era, principles of defining security and its adversarial models, Perfect Secrecy and Its Limitations. Computational securities, Definition of secure encryption	4
2.	Categorization of cryptographic algorithms	Categories of cryptographic algorithms, Conceptual security, Introduction to public and private key cryptography and its applications.	3
3.	Symmetric cryptography models	How to construct secure encryption? Substitution- permutation and Feistel networks, Stream and Block Symmetric encryption algorithms - DES, AES, RC4, Construction of CPA-secure encryption, illustration of CCA attacks, Modes of implementation of symmetric ciphers	7
4.	Message authentication	Differentiate between secrecy and integrity, Security requirements of hash functions, Birthday attacks and the Random oracle model, Secure Hash Algorithm (SHA), MAC functions, CBC-MAC, HMAC, Password hashing.	4
5.	Number theory and Asymmetric key cryptography	Fundamentals of group theory, Factorization, discrete log and Primality testing , Introduction to public key encryption, Diffie-Hellman key exchange	6
6.	Public key encryption	Key management in public key encryption systems, Hybrid model of encryption and KEM/DEM, El Gamal encryption,	4

TA Total		25 (Attendance(10), Assignment/Quiz(5), PBL (10)) 100	
End Semester Examination		35 25 (Attendence(10) Assistment/Onic(5) DDL (10))	
T2		20	
T1		20	
Compo	onents	Maximum Marks	
Evalua	ation Criteria		
		Total number of Lectures	42
	Techniques	attacks, The Random oracle model.	
	Sharing and Zero Knowledge	Identification Techniques Substitution-permutation and Feistel networks, Birthday	
9.	Multiparty Secret	Secret Splitting, Threshold Schemes, Feige-Fiat-Shamir	4
	signature	certificates, Certificates and public-key infrastructures, Proxy signature, Kerberos.	
0.	cryptographic	signatures: textbook RSA, hashed RSA , Digital	Ū
8.	Analysis of various	Digital signature definition and its applications, RSA	6
	(ECC) and Cryptoanalysis	digital signatures (ECDSA, Bitcoin)	
7.	Cryptography	cryptosystems (Diffie-Helman, El Gamal), Elliptic curve	4
	Elliptic Curve	padded RSA; CCA secure RSA KEM.Elliptic curve over finite fields, Elliptic curve	
		RSA: textbook encryption, attacks on textbook RSA,	

Project based learning:

Students form group of size 2-3 members. Each group will identify several security issues in distributed applications in various thrust areas like healthcare, industrial, education, smart city, logistics, environment, governance and etc. Once problem has been identified, the group will analyze the problem and synthesize system based solutions to the identified problem. Each group will apply different cryptographic approaches such as symmetric key, hash function, asymmetric key, and etc. This approach will enhance skills of each student and increase the understanding of security issue in distributed applications. Moreover, candidate will gain the enough knowledge to provide the cryptographic solution to enhance the security of any organization/company. After this course, a student will able to undertake any work in this area in the industry or research.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

Text Books:

ПСЛ	CAT DUOKS.				
1.	DR Stinson, Paterson M. Cryptography: theory and practice. CRC press, 2018 Aug 14.				
2.	Keith Martin. Everyday Cryptography: Fundamental Principles and Applications. Oxford University Press, 2017.				
Refe	rences:				
1	Cryptography: Portable technology offers boost for nuclear security, arms control applications JUNE 11, 2021.				
2.	Journal of Cryptography				
3.	ACM Transactions on Information and system security				
4.	IEEE Press Computer Security and Privacy				
5	IEEE Transactions on Information Forensics and Security				

Subject Code	21B12CS413	Semester	Semester 7 Session 2023-24
		Odd	Month from Aug to Dec 23
Subject Name	Fog and Edge Computi	ng	
Credits	3	Contact Hours	3 Lectures

Faculty (Names)	Coordinator(s)	Dr K. Rajalakshmi (J62), Ms. Akanksha Mehndiratta (J128)
	Teacher(s) (Alphabetically)	1. Ms. Akanksha Mehndiratta (J128)
		2. Dr K. Rajalakshmi (J62)
COURSE OUTCOMES	COGNITIVE LEVELS	
C431-11.1	Define the technologies, architectures, entities and protocols, used for cloud and IoT systems	Remember Level 1
C431-11.2	Illustrate need, advantages, disadvantages, and application opportunities of fog and edge computing	Understand Level 2
C431-11.3 Outline the architecture, components and performance of fog and edge computing systems		Understand Level 2
C431-11.4	Model and simulate a fog or edge scenario	Apply level 3
C431-11.5	Examine the challenges and techniques of data analytics in fog and edge computing	Analyze Level 4
C431-11.6	Assess the application of fog and edge computing methods and protocols in IoT smart systems	Evaluate Level 5

Module No. Subtitle of the Module Topics in the module	No. of Lectures for the
--	-------------------------------

			module
1.	Distributed Systems	Review of principles and concepts of Distributed Systems. Evolution of distributed systems: from mainframes to cloud to edge, Multi-tier distributed system architectures, Logical Time vs Physical Time	3
2.	Internet of Things	IoT Architecture & Technologies which include WSN (Wireless Sensor Networks) and IoT cloud computing, characteristics of IoT device platforms and products.	4
3.	Cloud computing	Cloud Computing characteristics of elasticity, multi-tenancy, on-demand access, ubiquitous access, usage metering, self-service capability, SLA-monitoring, Cloud Service Models/Types, Cloud deployment models, Mobile Cloud Computing, Virtual Machines, Containers	3
4.	Fog Computing	Definition, Characteristics, Application Scenarios, Issues, Fog Computing and Internet of Things, Pros and Cons, Need and Reasons for Fog Computing, Integrating IoT, FOG, Cloud- Methodology and Benefits	6
5.	Edge Computing	Introduction, Origins of edge, Difference from fog, Edge helping low-end IoT nodes, Edge helping higher-capability mobile devices: mobile offloading, Edge helping the cloud, Data processing on the edge, Compare architectural design options regarding the tradeoff between computations in an IoT system, at edge or at cloud depending on application demands and resource constraints, Hierarchy of Fog and Edge Computing	5
6.	Fog and Edge Computing Architecture	Performance Evaluation Components, Metrics, Architecture-Modeling, Proximity Detection Protocols, FaaS, Middleware for Fog and Edge Computing	7
7.	Data Management in Fog Computing	Fog Data Management, Big Data Analytics in the Fog, Machine Learning in Fog Computing, Security and Privacy Issues	6
8.	Case Studies	Related Paradigms of Mobile Edge Computing, Mist Computing, Mobile Ad hoc computing etc. Fog Enhanced Smart Homes and buildings, Modeling and Simulation of Fog and Edge Computing Environments Using iFogSim Toolkit	8
			42
Evaluation			
Componen T1 T2 End Semes	ter Examination Maximum 35	n Marks	

ТА	25 (Attendance = 10, Assignment/Quiz/ Mini-Project: 15)				
Total					
Project ba computing demonstra	ased learning : Each student in a group of 4-5 will study a practical problem in fog and edge g in detail along with its real-world applications. They will present it as a Case study or give a practical tion of the problem and its solution. This detailed study on distributed environment will help their ility into IT sector.				
	ended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Books, Journals, Reports, Websites etc. in the IEEE format)				
Reference					
1.	Buyya, Rajkumar, and Satish Narayana Srirama, eds. "Fog and edge computing: principles and paradigms". John Wiley & Sons, 2019.				
2	Chang, Wei, and Jie Wu. "Fog/Edge Computing For Security, Privacy, and Applications." Springer International Publishing, 2021				
3.	Mahmud, R., Kotagiri, R., & Buyya, R., "Fog computing: A taxonomy, survey and future directions". In Internet of Everything (pp. 103-130). Springer, Singapore, 2020				
4.	Ivan Stojmenovic, Sheng Wen ," The Fog Computing Paradigm: Scenarios and Security Issues" Proceedings of the 2014 Federated Conference on Computer Science and Information Systems pp. 1–8, 2020				
5.	Cao, Jie, Quan Zhang, and Weisong Shi. <i>Edge computing: a primer</i> . Springer International Publishing, 2018.				
Reference	Books				
1.	Mahmud, Redowan, and Rajkumar Buyya. "Modelling and simulation of fog and edge computing environments using iFogSim toolkit." <i>Fog and edge computing: Principles and paradigms</i> (2019): 1-35, 2019				
2.	Dastjerdi, Amir Vahid, Harshit Gupta, Rodrigo N. Calheiros, Soumya K. Ghosh, and Rajkumar Buyya. "Fog computing: Principles, architectures, and applications." In <i>Internet of things</i> , pp. 61-75. Morgan Kaufmann, 2016.				
3.	Dastjerdi, Amir Vahid, and Rajkumar Buyya. "Fog computing: Helping the Internet of Things realize its potential." <i>Computer</i> 49, no. 8 (2016): 112-116.				
4.	Serpanos, Dimitrios, and Marilyn Wolf (2017). Internet of things (IoT) Systems: Architectures, Algorithms, Methodologies. Springer. DOI:https://doi.org/10.1007/978-3-319-69715-4				

Detail Course Description

Course Code	ourse Code 21B12CS414 Semester ODD SEM 7 th Sem		Semester Session 2023 -2024 Month from Aug to Dec, 2023		
Course Name	Smart System and I	оТ			
Credits 3			Contact Hours		3-0-0

Faculty (Names)	Coordinator(s)	Dr. \PRAKASH KUMAR
	Teacher(s) (Alphabetically)	Dr. PRAKASH KUMAR

COURSE	OUTCOMES	COGNITIVE LEVELS
C431-6.1	Understand IoT and smart sensors systems and its various applications.	Understand (level 2)
C431-6.2	Classifyand Illustrate different sensors and its working principle for various applications.	Understand (level 2)
C431-6.3	Model smart systems using IoT standards, protocols,technologies, smart factory processes, recent industry 4.0+ standards, components and devices.	Apply (level 3)
C431-6.4	Evaluate and Assess smart system prototype designs for real-life Smart Applications.	Evaluate (level 5)
C431-6.5	Design and Develop various smart system applications namely, Smart Cities, Smart Home, Smart Health care systems, Smart transportations Systems, Smart Wearable Systems, Smart Agricultural Systems and Smart Factories.	Create (level 6)

Module No.	Title of the Module	Details of the Modules	
1.	Introduction to Smart Sensor and IoT	Introduction:IoT, Smart Sensors, Measuring and Monitoring Environmental Condition, Different types of Smart Systems and its various application field using IoT.	CO1
2.	Different Sensors and its characteristics	Sensors: Working Principles: Different types; Selection of Sensors for Practical Applications; Introduction of Different Types of Sensors such as Capacitive, Resistive, Surface Acoustic Wave for Temperature, Pressure, Humidity, Toxic Gas etc. Important	

		Characteristics of Sensors: Static and Dynamic.	
3.	Design of smart sensors	Importance and need to embrace the Smart Sensors, Architecture of Smart Sensors: Important components, their features. Interfacing Circuit for Smart Sensors and its Challenges.	CO2
4.	Smart Home and Cities	Benefit from the IoT to improve energy efficiency, security and convenience, Introduction of intelligent and connected devices. Smart Metering of Gas, Water, Electricity, Kitchen appliances, Smart Grid, Smart Traffic Management systems.	CO4
5.	Smart Health care system	Aging population, Challenges in digital health-care adoption, Health-care environment, Electronic Health Record (EHR) systems, Connected Healthcare system, Smart Health using Smart Phones, Health Monitoring Equipment and Sensors, Security and Privacy issues in IoT Protocol, Big Data for Health Management System.	CO4
6.	Smart Transportation system	Introduction to Intelligent Transportation Systems (ITS), Broad categories: Public infrastructure and the Automotive industry. Smart Transportation: Car Navigation, Traffic signal control systems, Automatic number plate recognition, Speed cameras, Management, Efficiency, and Safety.Challenges: Security, Environmental Considerations, Supply Chain Resiliency, Power Consumption and Responsible Data Management.SMART Dispatch System case study.	CO 4
7.	Smart Wearable System	Smart Wearable: health, activity, mobility, and mental status for both indoors and outdoors environment. Physiological sensor systems, Mobility Measurement System Designs: IoT based Wireless protocols. Real-Time decision support processing for disease prevention, symptom detection, and diagnosis. Challenges in design of wearable devices: flexible, lightweight, self-powered, miniaturized and self-healing materials.	CO4
8.	Smart Agricultural System	Precise Farming and Smart Farming, IoT components for Smart Farming: sensors, drones and robots. Suitable crops and water requirements for optimization using Smart Farming, Satellite imagery detects for pest and decease, Field Data analysis for profits, yields and patterns.	C04
9.	Smart Factory	Smart Manufacturing Processes and Industry 4.0- Three Dimensions: (1) Demand Driven and Integrated Supply Chains; (2) Dynamically Optimized Manufacturing Enterprises; (3) Real Time, Sustainable Resource Management. Smart Design/Fabrication - Digital Tools, Product Representation and Exchange Technologies and Standards, Agile (Additive) Manufacturing Systems and Standards. Mass Customization, Smart Machine Tools, Robotics and Automation (perception, manipulation, mobility, autonomy), Smart Perception – Sensor networks and Devices.	CO3
10.	Designing and prototyping a Smart System	Design and development of a prototype for the above discussed smart system application using IoT, Characteristics of the design: low cost, user-friendly interface, scalable and reliable. Hardware and software co-design, basic requirements of prototype demonstration.	CO5

Components	Maximum Marks
Components	
Tes-1	20
Test-2	20
End Term Exam	35
Attendance	10
Assignment	7.5
Project Based Assessment	7.5
Total	100

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Advances in Modern Sensors; Physics, design, simulation and applications by Sinha, G, R, IOP (Institute of Physics Publishing), 2020				
2.	Internet of Things: Architecture and Design Principles, Raj Kamal, McGrawHill. 2017				
3.	Jan Ho"ller, VlasiosTsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand, David Boyle, "From Machine-to-Machine to the Internet of Things -Introduction to a New Age of Intelligence", Elsevier, 2014.				
4.	ArshdeepBahga, Vijay Madisetti, "Internet of Things – A hands-on approach", Universities Press, 2015				
5.	David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton, Jerome Henry, "IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things", CISCO Press, 2017.				
6.	https://www.ibm.com/smarterplanet/us/en/?ca=v_smarterplanet				
7.	https://www.emerald.com/insight/content/doi/10.1108/PRR-08-2019-0027/full/html				
8.	https://www.digi.com/blog/post/introduction-to-smart-transportation-benefits				
9.	"Internet of Things: A Hands-on Approach", by ArshdeepBahga and Vijay Madisetti				
10.	https://nodered.org/docs/getting-started				
11.	https://www.arduino.cc/en/Tutorial/HomePage				

12.	https://www.raspberrypi.org/documentation/

Subject Code	21B12CS415	Semester: ODD		
N		Month: July 2023to December 2023		
Subject Name	Secure Design of Software Systems			
Credits 3 Contact Hours		Contact Hours	3-0-0	

Faculty	Coordinator(s)	Dr. Sulabh Tyagi (62), Dr. Shruti Jaiswal (128)
(Names)	Teacher(s) (Alphabetically)	Prof. Sandeep Kumar Singh, Dr. Sulabh Tyagi, Dr. Shruti Jaiswal

COURSE (DUTCOMES	COGNITIVE LEVELS
C431-13.1	Contrast various methods of securing data and invading (or breaching) security and privacy.	Understand (level 2)
C431-13.2 Apply different secure coding practices for improving the security and robustness of software system.		Apply (level 3)
C431-13.3	Use various open source security testing tools to discover security problems in the software system.	Apply (level 3)
C431-13.4	Analyze and model the security requirements during the secure devel- opment of the software system.	Analyze (level 4)
C431-13.5	Evaluate risks and associated impact of the various threats and attacks on different vulnerable points present in the software system.	Evaluate (level 5)

Module No.	Subtitle of the Module	Topics in the Module	No. of Lectures for the module
1.	Security of a software	Introduction, the problem, Software Assurance and Software Security, Asset, Vulnerability, Threat, Risk, Threats to software security, Sources of software insecurity, What Makes Software Secure: Properties of Secure Software.	4
2.	Requirement engineering for secure software	Secure Development Lifecycle, The SQUARE process Model, Requirements elicitation and prioritization	4
3.	Secure Design	Threat Modeling, Dataflow Diagram (DFD), Threat Tree (Attack Tree), STRIDE, DREAD, software security practices for architecture and design: architectural risk analysis, software security knowledge for architecture and design: security principles and guidelines.	7
4.	Secure Coding	Integer Overflows/underflows, Buffer Overflow, format	7

		string vulnerability, Beware of (escape characters, reserved words, delimiters and commands) attacks and defense,			
5.	Security Testing	Static Analysis, Penetration Testing, Fuzz Testing, Code Auditing, Developers guidelines and Checklist, Security Review, Attack Surface review.		6	
6.	Database Security and Auditing	Access control, Privileges, roles, Access Control Models, Design and Implementation of Discretionary Access Control, Role Based Access Control and Mandatory Access Control, Database Application Security models, SQL Injection, Virtual Private Databases, Database Auditing Models, Multilevel secure relational model, Watermarking relational databases, Security in distributed databases			
7.	Data Privacy and Metrics	Attacks on Privacy, Sanitization mechanisms, Privacy Definitions: k-anonymity, l-diversity, Protection against Background knowledge, Differential Privacy, Data anonymization, Anonymization operations: Generalization, Suppression, Anatomization, Permutation, Bucketization, Perturbation, Minimal distortion, Discernibility metric, Distinctive attribute.			
		Total number of Lectures		42	
Evaluatio	Evaluation Criteria				
Compon	ents	Maximum Marks			
T1		20			
T2 End Semester Examination		20 35			
TA		25 (Attendance (5),			
		Assignments in PBL mode/ Mini-Project/ Quiz (20)))		
Total		100			

Project based learning:Students will work in a group of 3-4 students on a selected project.Students will be required to develop a secure application while following secure software development practices and having countermeasures implemented against injection attacks, buffer overflows, etcand maintain database security.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

	Text Books
1	Robert C. Seacord: Secure Coding in C and $C++$, 2^{nd} Edition, SEI series in software engineering, 2013.
2	Adam Shostack: Threat Modeling: Designing for Security, Wiley, 2014.
	Reference Books
1	Gary McGraw, Software security Building security IN, Addison-Wesley software security, 2006.
2	Julia H. Allen , Sean J. Barnum, Robert J. Ellison, Gary McGraw , Nancy R. Mead: Software Security Engineering: A Guide for Project Managers, SEI series, 2008.
3	Jason Grembi, Developing Secure Software, Cengage Learning, 2009.

Detailed Syllabus

Course Code	21B12CS417	Semester: OD		Semester: VII Session: 2023-24 Month from: JULY-DEC
Course Name	Machine Learning and Big Data (C431-12)			
Credits	3	Cont	act Hours	3-0-0

Faculty (Names)	Coordinator(s)	Shailesh Kumar, Tarun Agarwal
	Teacher(s) (Alphabetically)	Shailesh Kumar, Tarun Agarwal

COURSE (COURSE OUTCOMES: At the end of the course, students will be able to COGNITIVE LEVELS				
C431-12.1	Identify the characteristics of datasets and the types of machine learning techniques.	Understand Level (Level 2)			
C431-12.2	Utilization of online learning methods in the context of big data applications	Apply Level (Level 3)			
C431-12.3	Select and implement machine learning techniques and computing Apply Level (Level 3)				
	environment that are suitable for the applications under consideration.				
C431-12.4	Implement parallel learning algorithms using OpenMP/ CUDA/ OpenCL.	Apply Level (Level 3)			
C431-12.5	Evaluate and validate different problems associated with big data Evaluate (Level 5)				
	characteristics for high dimensionality, and in scalability issues.				

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to ML and Big data	Representation of data and exploration. Modeling of machine learning techniques. Application of big data computing technologies.	4
2.	Machine learning techniques	Three phases of machine learning, types of learning, Support vector machine, Decision trees and Random forests. Deep learning.	6
3.	Online methods for linear and nonlinear models	Online linear learning, 2 nd order methods and analysis of convergence, LBGFS: BFGS and Limited Storage BFGS, Online learning for non-linear/non-convex models, Non-Convex Optimization in Machine Learning	6
4.	Big data computing environment	Hadoop; Map-reduce/All-reduce; Hadoop Distributed File System, map reduce, Linear Learning with All-Reduce	7
5.	Parallelization of learning algorithms	Introduction to parallel learning algorithms and implementation using OpenMP/ CUDA/ OpenCL.	7
6.	Scaling up machine learning-I	Inverted Indices & Predictive Indexing; Feature Hashing; Locally-sensitive Hashing & Linear Dimensionality Reduction; Nonlinear Dimensionality Reduction; Feature Learning; PCA, LDA, SVD.	6
7.	Scaling up machine	Handling Many Classes, class embedding; Active Learning;	6

learning-II	Concepts, Scenarios, Clustering based active learning, Semi- supervised active learning, Exploration and Learning.	
	Total number of Lectures	42

Evaluation Criteria	
Components	Maximum Marks
T1	20
T2	20
End Semester Examination	35
ТА	25 (Attendance(10), Assignments/Mini-project/Tutorials/Quiz (15))
Total	100

Project based leaning: Groups of 3-4 students will choose a project topic. They will use a suitable computing environment and machine learning technique to solve a real time big data problem. In a team, they will learn how to apply the concepts for problem solving in a meaningful way.

Text	t Books:			
1	Mining of Massive Datasets by Jure Leskovec, Anand Rajaraman, Jeff Ullman, 3 rd edition, Cambridge University Press, 2019 (http://infolab.stanford.edu/~ullman/mmds/book0n.pdf)			
2	Machine Learning - A Complete Exploration of Highly Advanced Machine Learning Concepts, Best Practices and Techniquesby Peter Bradley, Draft2digital, 25 June 2019			
Refe	Reference Books:			
1	Data-Intensive Text Processingwith MapReduce by Jimmy Lin and Chris Dyer, Morgan publishers, 2010. (http://www.iro.umontreal.ca/~nie/IFT6255/Books/MapReduce.pdf)			
2	Guoqiang Zhong, Li-Na Wang, Xiao Ling, Junyu Dong, "An overview on data representation learning: From traditional feature learning to recent deep learning", The Journal of Finance and Data Science, Vol. 2 (4), pp. 265-278, 2016, ISSN 2405-9188, https://doi.org/10.1016/j.jfds.2017.05.001.			
3	Active Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning) by Burr Settles, Morgan & Claypool Publishers, 30 July 2012			

Course Code NBA Code	21B12CS418	Semester OD	D		er VII Session 2023-2024 from July-December
Course Name Ethical Hacking and Pre		Prevention			
Credits 3			Contact H	Iours	3

Faculty (Names)	Coordinator(s)	P. Raghu Vamsi (J62),Shariq Murtuza (J128)
	Teacher(s) (Alphabetically)	P. Raghu Vamsi (J62),Shariq Murtuza (J128)

COURSE	OUTCOMES	Cognitive Levels
C432-9.1	Summarize the concepts of hacking, Malwares, Network attacks, Denial of Service and counter measures	Understand Level (Level 2)
C432-9.2	Demonstrate foot printing and port scanning techniques using simple tools	Apply Level (Level 3)
C432-9.3	Carryout vulnerabilities scanning, exploitation, and countermeasures in operating system, network and web application.	Apply Level (Level 3)
C432-9.4	Examine wireless network and mobile system exploitation tools with prevention	Apply Level (Level 3)
C432-9.5	Explain legal aspects of ethical hacking and writing pen testing report	Analyze Level (Level 4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1	Overview	Types of Hackers, Introduction to Ethical Hacking, What is legal and what is not, TCP/IP overview	4
2	Reconnaissance and Prevention	Active and Passive Footprinting, Web tools for Footprinting, Information Gathering by Social engineering, Social Engineer Toolkit(SET), Prevention of Information gathering	4
3	Scanning and Prevention	Pings and Ping Sweeps, Port Scanning, NMap, Vulnerability Scanning, Enumerating OS,OS Vulnerabilities scanning – NETBIOS, Tools for identifying Windows and Linux vulnerabilities, Web applications vulnerability scanning, Preventing Scanning	4
4	Exploitation – Network and System	Techniques for Gaining Access, Remote service access, password crackers, Sniffing the Network, Network Attacks – ARP, Session Hijacking and Denial of Service	6
5	Exploitation – Web Based	Basics of Web Hacking, Nikto, Spidering, Webscarab, Code injection, PDF Hacking	4
6	Prevention of Exploitation	Protecting against Malware, Best practices for Hardening Operating Systems, Web Filtering, Secure routers, Firewalls, Honeypots, Intrusion Detection Systems	4
7	Post Exploitation and Defense	Maintaining access with Backdoors, rootkits and meterpreter, privilege escalation, Penetrating the Internal	4

		Network Further, Defense - Recovery and Counter attack				
8 Mobile Hacking and Security		Mobile platform attack vector, android vulnerabilities, jailbreaking iOS, windows phone vulnerabilities, mobile security guidelines, and tools	4			
9	Pentesting Report	Various types of penetration testing, security audit, vulnerability assessment, and penetration testing roadmap	3			
10	Legal Aspects of Ethical Hacking	Code of Ethics, Legal frameworks, Security Research5Exemption, Whistle Blowing, Security Activism, IT Act2000 and IT AA 2008				
	Total number of Lectures 42					
Evaluation	n Criteria					
Compone	nts	Maximum Marks				
T1		20				
T2		20				
		35				
End Semes	ster Examination	35				
End Semes TA	ster Examination	3525 Attendance (10 Marks), Assignment/Quiz/Mini-project (15)	5 Marks)			

Project based learning: Student shall be a part of a group of 4-5 students and will be required to model and simulate real life enterprise system and apply ethical hacking tools to launch, detect and mitigate the attack. The highlighted content can be used to choose project topics that help students evaluate and apply the knowledge gained. The goal for each project is to work on case studies similar to those that a professional security tester comes across.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	• Wylie, P. L., & Crawley, K. (2020). The Pentester Blueprint: Starting a career as an ethical hacker. John Wiley & Sons.					
2.	Wilson, R. (2022). Hands-on ethical hacking and network defense. Cengage Learning.					
3.	Singh, G. D. (2022). The Ultimate Kali Linux Book: Perform Advanced Penetration Testing Using Nmap, Metasploit, Aircrack-ng, and Empire. Packt Publishing Ltd.					
4.	Gregg, M. (2022). CEH Certified Ethical Hacker Cert Guide. Pearson IT Certification.					
5.	Christen, M., Gordijn, B., & Loi, M. (2020). The ethics of cybersecurity (p. 384). Springer Nature.					
6.	Chander, H., & KAUR, G. (2022). Cyber laws and IT protection. PHI Learning Pvt. Ltd.					

Advanced Statistical Methods (22B12MA411)

Course Description

Course Co	ourse Code 22B12MA411 Semester Odd Semester I Session Month from Aug -							
Course Name Advance			nced Statistical	Methods		<u>.</u>		
Credits			3		Cont	act Hours		3-0-0
Faculty (N	ames)	Соог	rdinator(s)	Dr.Ayushi Sing	gh Sen	gar		
			her(s) 1abetically)	Dr. Ayushi Sin	gh Sen	ıgar		
COURSE	OUTCO	DMES						COGNITIVE LEVELS
After pursu	ing the a	above r	nentioned cours	e, the students w	ill be a	ble to:		
C401-22.1	distri	butions	5.	riate descriptive				Remembering Level (C1)
C401-22.2			concepts of tim riate statistics.	e series, control	charts,	Hypothesis tes	sting	Understanding Level (C2)
C401-22.3		e use ivariate		Regression ar	nd Hy	pothesis testin	g in	Applying Level (C3)
C401-22.4	Anal	yze dat	a using Regress	ion and ANOVA	techn	iques.		Analyzing Level (C4)
Module No.	Title o Modu		Topics in the Module			No. of Lectures for the module		
1.	Univar Statisti		Univariate descriptive statistics, central limit theorem, Sampling Distribution associated with normal population, Sampling distributions, (chi square, t, F and Z) and hypothesis tests, Time Series: Components, Measurement of trends by graphical method and method of semi averages, Techniques of statistical quality control, control charts for variables and attributes.				12	
2.	Regres		Linear Regression, Least Squares Estimation, Normal Regression, Tests of hypothesis for regression coefficients and mean.			8		
3.	Introdu toMult ate Statisti	ivari	Introduction of random vectors, Descriptive Statistics, Covariances, Correlations matrices, Multivariate normal distribution.			10		
4	Multiv Hypotl Testing	nesis	Tests of hypothesis: Tests on with Known and unknown (Hotelling T2 statistic) of a multivariate normal population, one way and two-way analysis of variance				12	

	(ANOVA) (populations with equal variance), Wilk's test statistic.					
		Total number of Lectures	42			
Eval	uation Criteria					
T1 T2	ponents Semester Examination	Maximum Marks 20 20 n 35 25 (Quiz, Assignments, Tutorial, PBL) 100				
	ect based learning:S thesis testing.	tudents in groups will collect multivariate data and use it for				
	0	material: Author(s), Title, Edition, Publisher, Year of Public e Books, Journals, Reports, Websites etc. in the IEEE formation				
1.	T. W. Anderson, Ir	troduction to multivariate analysis, John Wiley, 1984.				
2.	 Biswas and Srivastava, A Textbook, Mathematical Statistics 1st Edition, Narosa Publishing House, New Delhi, 2011. 					
3.	A. M. Kshirsagar,	Multivariate analysis, Marcel Dekker, 1983.				
4.	4. R. A. Johnson and D. W. Wichern , Applied multivariate statistical analysis, Prentice hall Inc., 1988.					
5.	5. D. F. Morrison, Multivariate Statistical Methods, McGraw Hill Co.,3rd ed., 1990.					
6.	6. W. K. Hardle and L. Simar , Applied Multivariate Statistical analysis, Springer, New York, 2019.					
7.	Alvin C. Rencher, INC. PUBLICATIC	Methods of Multivariate Analysis, A JOHN WILEY & SON N, Newyork, 2001.	S,			
8.	Seldom M. Ross, I Edition, Elsevier.	ntroduction to Probability and Statistics for Engineers and	Scientists, Third			

Course Code	16B1NBT531	(specify Odd/Even)			er VII 2023-24 from June -Dec
Course Name	Networks of Life				
Credits	3		Contact I	Iours	LTP 300

Faculty	Coordinator(s)	1. Dr. Chakresh Jain		
(Names)	Teacher(s) (Alphabetically)	1. Dr. Chakresh Jain		
COURSE OUT	COURSE OUTCOMES			
C401-15.1	Explain different type of networks C2			
C401-15.2	C401-15.2 Explain models, motifs and network analytics C2			
C401-15.3 Apply networks to solve biological and social problems.			C3	
C401-15.4	Case studies on	Case studies on pathogen informatics, metabolic pathways C4		

Final

COURSE OUTCOMES		COGNITIVE LEVELS
C401-15.1	Explain types of networks and network analytics.	C2
C401-15.2	Apply networks to solve biological and social problems.	C3
C401-15.3	Analyze networks for understanding the biological interactions	C4
C401-15.4	Evaluate computational approaches for network analysis	C5

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Network Sciences	Introduction to network sciences, Graph Theory, Random network, Scale Free Property, Various Models- Erdos Renyi, Barabasi- Albert etc. Centrality and Weighted Networks, Degree, Communities Identification, Robustness, Motifs	18

			and Evolving Networks.	
2.	Computational Resources		Hands-on Cytoscape tool, Gephi, etc.	4
3.	Applications advanced topics	&	Multi-Layered Networks, Spreading phenomenon, Temporal Networks, Networks in epidemics, networks in business, social networks, controlling networks, percolation, rewiring, machine learning in networks	10
4.	Miscellaneous		Case studies, projects, hands on workshop on advanced modules on python.	10
			Total number of lectures	42
Evaluation C	riteria			
Components Maxin		num Marks		
T1		20		
T2		20		
End Semester Examination 35				
ТА		25 (As	ssignments, MCQ, PBL)	
	Total	100		

<u>PBL:</u> Students will choose any topic on Biological Network, Python language, Analysis tools and it's application to solve the biological problem linked to a particular disease in a group of 4-5 students.

	ed Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text ence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	R. Cohen and S. Havlin, Complex Networks - Structure, Robustness and Function, Cambridge Univ Press, 2010.
2.	M.O. Jackson, Social and Economic Networks, Princeton Univ Press, 2008.
3.	A. Barrat, M. Barthelemy and A. Vespignani, Dynamical Processes on Complex Networks, Cambridge Univ Press, 2008.
4.	E. Kolaczyk, Statistical analysis of network data, Springer, 2009.
5.	S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications, Cambridge Univ Press, 1994.
6.	P. Van Mieghem, Graph Spectra for Complex Networks, Cambridge Univ Press, 2011.
7.	R. Diestel, Graph Theory (4th edition), Springer, 2010.
8.	R.K.Ahuja and T.L.Magnanti, Network Flows: Theory, Algorithms, and Application, Pearson, 1993.
9.	Mark Newman, Albert-László Barabási, and Duncan J. Watts, The Structure and

	Dynamics of Networks, ISBN: 9780691113579, Princeton University press, 2006
10.	Albert-László Barabási, Network Science, Cambridge University Press in 2015.

Course Description

Subject Code	19B12CS427	Semester ODD 2023	Semester VII Session 2023–24 Month from July '22 to Dec '22
Subject Name	Introduction to DevOps		
Credits	3	Contact Hours	3L

Faculty (Names)	Coordinator(s)	Dr. Amarjeet Prajapati(J62), Dr. Pulkit Mehndiratta(J128)
	Teacher(s)	 Dr. Amarjeet Prajapati Dr. Pulkit Mehndiratta Ms. Aupama Pada
Sections	1	

COURSE O	COGNITIVE LEVELS	
C431-8.1	Students will be able to understand the needs of Continuous integration, continuous delivery, continuous deployment and continuous monitoring.	Understand Level (Level 2)
C431-8.2	Students will be able to create pull and push requests using GIT and GIT Hub and also able to review the changes on GitHub	Create Level (Level 6)
C431-8.3	Students will be able to Write scripts for the creating pipeline and deploying the micro services for the Developed Application for the calculated load and response times.	Create Level (Level 6)
C431-8.4	Students will be able to write scripts for the measuring and loading the reports in KAFKA and Tableau for management view.	Evaluate Level (Level 5)

Module No.	Subtitle of the Module	Topics in the module	No. of Lectures for the module
1.	Introduction	Why DevOps? What is DevOps? DevOps Market Trends DevOps Engineer Skills DevOps Delivery Pipeline DevOps Ecosystem	8

2.		Creating and merging different Git	8	
		Branches Git workflows		
		Git cheat sheet		
	Git,CI, CD, CDep,	What is Continuous Integration?		
	CM	What is Continuous Delivery?		
		What is Continuous Deployment?		
		What is Continuous Monitoring?		
3.		Introduction to Jenkins (With Architecture)	8	
		Jenkins Management		
	Jenkins	Adding a slave node to Jenkins		
	Jonanis	Building Delivery Pipeline		
		Pipeline as a Code Implementation of Jenkins in the		
		Projects		
4.	<u></u>	Introduction to Chef & Ansible	8	
	Chef and Ansible	Chef Installation and Uses		
		Ansible Installation		
		Configuring Ansible Roles		
5.		Revisiting Kubernetes Cluster Architecture	10	
		Spinning up a Kubernetes Cluster		
		on Ubuntu VMs		
	Containerization	Exploring your Cluster		
		Understanding YAML		
		Creating a Deployment in		
		Kubernetes using YAML Total number of Lectures	42	
		Total number of Lectures		
Evaluation Crite	eria			
Components		num Marks		
T1 T2	20			
T2 End Semester E	Examination 20			
TA		s), Assignment/Quiz/Mini-project (20 Marks)		
***	Total 100			

Project based learning: Student shall be a part of a group of 5-6 students and will be require to create software projects using DevOps principles. The students are supposed to use advance tools like Chef, Ansible and Jenkins to implement automatic building and pipelining. Understanding how these building works them will enable their employability in software engineering sector.

Reco	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books,		
Reference Books			
1.	Practical DevOpsby Joakim Verona, 2017, Packt publishing		
2.	Ansible: Up and Running, Automating Configuration Management and Deployment the Easy		

	Wayby Lorin Hochstein, Rene Moser, 2017			
3.	DevOps: A Software Architect's Perspectiveby Len Bass, Ingo Weber, Liming Zhu, 2018			
4.	Accelerate, The Science of Lean Software and DevOps: Building and Scaling High Performing Technology Organizationsby Nicole Forsgren, Jez Humble, Gene Kim, 2019			
Text	Text Books			
5.	Effective DevOps: Building a Culture of Collaboration, Affinity, and Tooling at Scaleby Jennifer Davis, Ryn Daniels by Orielly, 2017			
6.	Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation by Jez Humble and David Farley, 2018			