<u>Detailed Syllabus</u> <u>Lab-wise Breakup</u>

Course Code	17M15CS122	Summer Seme	ester	Session:	2023 - 2024
Course Name	Performance Engine	Performance Engineering Lab			
Credits	2	Contact H		Iours	2 hrs
Faculty (Names)	Coordinator(s)	Dr. Parmeet Kaur, Ms.Neha			
	Teacher(s) (Alphabetically)	Dr. Parmeet Kaur, Ms.Neha			

COURSE	OUTCOMES	COGNITIVE LEVELS
C174.1	Experiment with profilers to calculate the performance and statistics of a program in terms of call counts and timing information of functions.	Apply (level 3)
C174.2	Analyze performance of data mining algorithms on real world data sets using Weka, NetworkX tool.	Analyze (level 4)
C174.3	Compare the performance of different protocols by simulating various wired and wireless network scenarios in Python, Wireshark, NS2 Simulator.	Analyze (level 4)
C174.4	Examine the performance of M/M/1, M/D/1 and D/M/1 Queuing models in NS2.	Analyze (level 4)
C174.5	Model computer systems using Markov Chain Theory with Performance Evaluation Process Algebra (PEPA), and visualizing network performance	Analyze (level 4)

Module No.	Title of the Module	List of Experiments	
1.	GNU Profiler	Use the Gprof (GNU Profiler) to analyze the performance and	1
		statistics of a program	
2.	Data Science Tools	Data analysis using WEKA tool	2
3.	Network Simulation	Introduction to Network simulator (NS2) and its various utilities	3
		NAM, XGraph etc.	
		Creation of Wired and Wireless Network Scenarios and	
		simulation of various protocols	
		Wired and Wireless Network Performance Analysis using AWK	
		and Python	
4.	Queuing Analysis	Simulation of various queues in NS2 and analyzing their	4
		performances on various performance metrics such as	
		throughput, average delay and packet loss	
5	Performance	Model computer systems using Markov Chain Theory and	5
	Evaluation Process Algebra	Perform Steady State Analysis, and Visualizing network	
	1115014	performance using Open Source Tools	

Evaluation Criteria

Components	Maximum Marks	
Evaluation-1:	15	
Lab Test-1:	20	
Lab Test-2:	20	
Evaluation-2:	15	
Project, Attendance, Assig	gnments: 30	
Total	100	

Project based Learning: Each student in a group of 3-4 will study the research papers related to performance analysis of software systems. The articles should be recent and in relation with the subject contents. Understanding and implementing the research paper(s) enhances the student's working experience towards studied tools and concepts.

	ommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, rence Books, Journals, Reports, Websites etc. in the IEEE format)
1.	Unix and Shell Programming by B. M. Harwani, Oxford University Press, 2013
2.	Mastering Wireshark by Charit Mishra, Packt Publishing, 2016
3.	Mastering Linux Shell Scripting, A Practical Guide to Linux Command-line, Bash Scripting, and Shell Programming, 2nd Edition by Mokhtar Ebrahim, Andrew Mallett, Packt Publishing, 2018
4.	Modeling and Simulation in Python: An Introduction for Scientists and Engineers by Allen Downey, No Starch Press, 2023
5.	Practical Packet Analysis Using Wireshark to Solve Real-world Network Problems by Chris Sanders, No Starch Press, 2007
6.	Introduction to Network Simulator NS2 by Teerawat Issariyakul, Ekram Hossain, Springer, 2009
7.	Predictive Analytics Applications with WEKA by Shuzlina Abdul Rahman & Sofianita Mutalib, 2021
8.	Marc Greis Tutorial for the UCB/LBNL/VINT Network Simulator NS
9.	GPROF Tutorial – How to use Linux GNU GCC Profiling Tool
10.	The ns Manual, available at: isi.edu/nsnam/ns/doc/ns_doc.pdf

<u>Detailed Syllabus</u> Lab-wise Breakup

Course Code	17M15CS123	Semester 9 th		2023-20	er INTSUM2024 Session 024 from June to July, 2024
Course Name	IoT Systems Development Lab				
Credits	1		Contact	Hours	2 Hours

Faculty	Coordinator(s)	Ms Amarjeet Kaur
(Names)	Teacher(s) (Alphabetically)	Ms Amarjeet Kaur Dr K.Rajalakshmi

	COURSE OUTCOMES	COGNITIVE
		LEVELS
C181.1	Explain Node-RED IDE platform for IoT application	Understand (level 2)
	development and demonstrate I/O nodes, flows, third party	
	palettes, import/export of flows in Node-RED.	
C181.2	Develop user defined functional nodes and deploy it in Node-	Apply (level 3)
	Red.	
C181.3	Analyze various IoT Communication protocols using APIs with	Analyze (level 4)
	Arduino and Raspberry Pi along with sensors and actuators.	
C181.4	Apply and evaluate the characteristics of different IoT devices.	Evaluate (level 5)
C181.5	Design and develop IoT based applications for various	Create (level 6)
	challenges and problems related to Sustainable Development,	
	e.g., energy and waste management, water conservation, clean	
	energy, improving public health, sustainable urbanization, smart	
	agriculture etc.	

Module No.	Title of the Module	List of Experiments	СО
1.		Setup and Install Node.js and Node-RED as IDE platform for IoT application development.	CO1
2.	Node-Red	Demonstrate I/O nodes, flows, third party palettes, import/export of flows in Node-RED	CO1
3.	Installation and Use	Develop Java Script based IoT applications using functional nodes, flows and dashboard on Node-RED platform	CO ₂
4.		Developing and implementation of user defined nodes for creating flows in Node-Red.	CO2
5.	Study and use of Arduino and	Study and interface of Arduino and Rasberry Pi with different types of sensors and actuators	
6.	Raspberry Pi, sensors and actuators.	Creation of various IoT based applications using Arduino and Rasberry Pi	

7.	Developing IoT based systems applications using Arduino and Raspberry Pi	Developing smart applications for various challenges and problems related to Sustainable Development, e.g., energy and waste management, water conservation, clean energy, improving public health, sustainable urbanization, smart agriculture etc.	CO5
Evaluation	Criteria		
Component	ts	Maximum Marks	
Eval#1		15	
Lab Test# 1		20	
Eval#2		15	
Lab Test# 2	2	20	
Attendance		10	
IoT System Development PBL		20	
Total	•	100	

<u>Project based learning:</u> Students form group of size 2-3 members. Each group will identify several real life issues in various thrust areas like healthcare, industrial, education, smart city, logistics, environment, governance and etc. Once problem has been identified, the group will analyze the problem and synthesizeIoT system based solutions to the identified problem. Each group will apply different IoTbased approaches such as smart sensor and heterogeneous devices. This approach will enhance skills of each student and increase the understanding of IoT systems in distributed applications. Moreover, candidate will gain the enough knowledge to provide the IoT solution to enhance the quality of life in human/organization. After this course, a student will able to undertake any work in this area in the industry or research.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

	, , , , , , , , , , , , , , , , , , , ,
1.	Internet of Things: Architecture and Design Principles, Raj Kamal, McGrawHill.
2	"Internet of Things: A Hands-on Approach", by ArshdeepBahga and Vijay Madisetti
3	https://nodered.org/docs/getting-started
4.	https://www.arduino.cc/en/Tutorial/HomePage
5.	https://www.raspberrypi.org/documentation/

Course Description

Subject Code	22B12CS412	Semester:Summer 2024	Semester: DD9	Session: 2023 -2024
			Month from: June to	July 2024
Subject Name	Digital Forensics and Cyber Laws			
Credits	3-0-0	Contact Hours		3

Faculty (Names)	Coordinator(s)	Dr. Kapil Madan (62), Ms. Anuradha Gupta (128)
	Teacher(s) (Alphabetically)	Ms. Anuradha Gupta (128), Dr. Kapil Madan (62)

After the completion of the course, Students are able to		
COURSE OUTCOMES COGNITIVE LEVEL		COGNITIVE LEVELS
C433-8.1	Summarize the concepts and categories of cybercrimes.	Understand Level (C2)
C433-8.2	Explain the different forms of digital forensic investigation methodology.	Understand Level (C2)
C433-8.3	Make use of digital evidence collection guidelines.	Apply Level (C3)
C433-8.4	Solve cybercrime cases with respect to Indian cyber laws and IT Act.	Apply Level (C3)
C433-8.5	Examine the various digital forensic tools in real-time scenarios.	Analyse Level (C4)

Module No.	Subtitle of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction to Cybercrime	Introduction, Role of Electronic Communication Devices and Information and Communication Technologies in Cybercrime, Types of Cybercrime, Classification of Cybercriminals, Tools used in Cybercrime, Challenges to Cybercrime, Strategies to Prevent Cybercrimes	05
2.	Cyber warfare and cyber laws	Introduction to Cyber War, Ransomware ,Types of Ransomware, Mode of Infection , Events in Ransomware Attack , Role of Antivirus Deep Web and Dark Web, Accessing Dark Web, Onion Router—TOR, Introduction to Cyber Laws, Cyber Laws in India and Case Studies, Information Technology Act 2000, Amendments to the Indian Evidence Act 1872 in View of Information Technology Act 2000	06
3	Introduction to Digital Forensics	Computer Forensics Investigations, Steps in Forensic Investigation, Forensic Examination Process, Methods Employed in Forensic Analysis, Forensics classification, Incident and Incident Handling, Disk, Network, Database, Wireless, Malware, Mobile, GPS, Email, Memory forensics, Incident and Incident handling	06
4	Digital Evidence	Digital Evidence, Evidence Collection Procedure, Acquisition and Handling of Digital Evidence, from different digital devices, Operating Systems and their Boot Processes ,Storage Medium , File System, Windows Registry, Windows Artefacts , Browser Artefacts, Linux Artefacts ,Whole Disk Encryption or Full Disk Encryption, Evidence from Mobile Devices, Digital Evidence on the Internet, Challenges with Digital Evidence	06
5	Acquisition and Handling of	Preliminaries of Electronic or Digital Evidence, Acquisition and Seizure of Evidence, Chain of Custody, Acquisition of Computer and Electronic Evidence, Acquisition Procedure using Target Disk Mode from Apple	06

		Total number of Lectures	42
7	Forensic Tools	Forensic Tools, Types Cyber Forensic Suite, Free and Open-source Forensic Suite, Proprietary Forensic Suites, Drive Imaging and Validation Tools, Forensic Tool for Integrity Verification and Hashing, Forensic Tools for Data Recovery, Forensic Tools for RAM Analysis Registry Analysis, Encryption/Decryption, Password Recovery, Network Analysis, Forensic Utility for Metadata Processing UNIX System Analysis	07
6	Analysis of Digital Evidence	Introduction ,Capturing of Forensic Copy of Memory and Hard Drive with Toolkit Forensic Imager , RAM Analysis with Volatility ,Analysing Hard Drive, Working with Autopsy, Email Tracking and Tracing	06
	Digital Evidence	Macintosh Computer, Mobile Phone and PDA, Optical and Removable Media, Digital Cameras, Handling of Digital Evidence	

T 1		~ • •
HVO	liiation	Criteria
Lya	luauvii	CIIIIII

Components Maximum Marks

Mid Term 30 End Term 40

TA 30 (Attendance-08, Class Quiz-10, Internal

Assessment/Assignment -05, Project Based Learning - 07)

Total 100

Project Based Learning: The students are grouped into groups of size 2-3 and will be implementing various cyber forensics tools. The student will analyze the requirements and select the required applications. This will help in the employability of students in the cyber security and forensics based industry and public sectors.

	Text Books:
1.	Cyber Forensics by Murugan, S, Oxford University Press.
2	Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by Nina Godbole and Sunit Belpure, Publication Wiley.
	Reference Books:
1.	Cybercrime and Digital Forensics: An Introduction by Thomas J. Holt, Adam M. Bossler, Kathryn C. Seigfried-Spellar, Routledge; 2nd edition, 2017
2.	Digital Forensics and Incident Response: A practical guide to deploying digital forensic techniques in response to cyber security incidents by Gerard Johansen, Packt Publishing Limited, 2017
3	The Basics of Digital Forensics: The Primer for Getting Started in Digital Forensics by John Sammons, Syngress; 2nd edition, 2014

<u>Detailed Syllabus</u> Lecture-wise Breakup

Subject Code	22B12CS422	Semester: Even Semester Summer 2024	
			Month from: June 2024 to July 2024
Subject Name	Cloud computing essentials: Azure and AWS		
Credits	3	Contact Hours	3-0-0

Faculty (Names)	Coordinator(s)	Dr. Kashav Ajmera, Mr. Sumeshwar Singh
	Teacher(s) (Alphabetically)	Dr. Kashav Ajmera, Mr. Sumeshwar Singh

COURSE (COURSE OUTCOMES	
C434-7.1	Recall the fundamentals of Cloud Computing, its applicability and architecture.	Remember (level 1)
C434-7.2	Understand the architecture and services of AWS (Amazon Web Services), Azure and Google Cloud platforms.	Understand (level 2)
C434-7.3	Apply the AWS, Azure and Google cloud platform to solve the realworld problems.	Apply (level 3)
C434-7.4	Analyze the AWS, Azure and Google cloud platform to solve the real-world problems.	Analyze (level 4)
C434-7.5	Create the applications using appropriate cloud platforms.	Create (level 6)

Modul e No.	Subtitle of the Module	Topics in the Module	No. of Lectures for the module
1.	Overview of Cloud Computing	Origin of Cloud Computing, Benefits and challenges, Parallel and distributed computing, Grids and HPCs, Data center design and management for clouds, Virtualization: Why virtualization, Benefits and shortcomings, comparison with cloud, Software Defined Networks and Storage (SDN and SDS) Cloud Computing Architecture: IaaS, PaaS, SaaS, Types of cloud, Interoperability and its challenges, Cloud security, stability and fault tolerance methods and challenges, Applications for cloud, Clouds for different applications, Service Level Agreements, Concurrent, high-throughput and data intensive computing	10

2.	AWS Essentials	Introduction to Amazon Web Services, EC2: Compute services, Networking, infrastructure and reliability, Storage and database services, Amazon Elastic Block Store (Amazon EBS), Amazon Simple Storage Service (Amazon S3), Amazon Elastic File System (Amazon EFS), Amazon Relational Database Service (Amazon RDS), Amazon virtual private cloud (VPC), Identity and Access Management (IAM) and Security on AWS.	8
3.	Azure Essentials	Azure core concepts, Azure services, Describe core solutions and management tools on Azure, Describe general security and network security features, Describe identity, governance, privacy, and compliance features, Describe Azure cost management and service level agreements.	8
4.	GCP Essentials	Google Cloud Fundamentals: Core Infrastructure-Google App Engine, Google Compute Engine, Google Kubernetes Engine, Google Cloud Storage, Google Cloud SQL, and BigQuery. Google Cloud Resource Manager hierarchy and Google Cloud Identity and Access Management, Essential Google Cloud Infrastructure: Foundation, Essential Google Cloud Infrastructure: Core Services, Elastic Google Cloud Infrastructure: Scaling and Automation, Reliable Google Cloud Infrastructure: Design and Process	8
5.	Recent trends, Cloud Platforms Comparison & Project based learning	Serverless computing, Microservices, Usage of containers and Dockers, Kubernetes, Comparing the services and efficiency of AWS, Azure and GCP with respect to resource management. Discussing and Implementing a few web applications and system applications on the cloud platforms under different resource management scenarios. Analyzing and evaluating the platforms based on various parameters like security, load balancing, fault tolerance, resilience, cost-effectiveness, etc.	8
		Total number of Lectures	42
Evaluati	on Criteria		
Components T1 T2 End Semester Examination TA Total		Maximum Marks 20 20 35 25 (Attendance (10), Mini-Project (10), Assignments (5)) 100	

Project based learning: Groups of 2-3 students will choose a project topic. They will use the concepts of cloud technology to execute their project. In a team, they will learn how to apply the concepts for problem solving in a meaningful way. The knowledge gained will enhance their employability in the IT sector.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)	
	Text Books	
1.	Buyya, Rajkumar et al. "Cloud Computing Principles and Paradigms." Wiley, 2011.	
2.	Reagan, Rob. "Web Applications on Azure." Apress, 2017	
3.	Moyer, Christopher M "Building Applications in the Cloud: Concepts, Patterns, and Projects." Pearson Education, 2011.	

4.	Wilkins, Mark. "Learning Amazon web services (AWS): a hands-on guide to the fundamentals of AWS cloud". Addison-Wesley Professional, 2019
	Reference Books
5	Sosinsky, Barrie A "Cloud Computing Bible." (2010).
6.	Pace, Eugenio et al. "Developing Applications for the Cloud on the Microsoft Windows Azure Platform." (2010).
7	Reese, George. "Cloud Application Architectures - Building Applications and Infrastructure in the Cloud." (2009).
8	Diaz, Francesco and Roberto Freato. "Cloud Data Design, Orchestration, and Management Using Microsoft Azure." <i>Apress</i> (2018).

Detailed Syllabus Lab-wise Breakup

Course Code	17M15CS121	Semester – M. Tech CSE/AIML			ter Summer 2024 from: June 2024 to July 2024		
Course Name	Cloud and Web Services Lab						
Credits	1	Contact Hours		Hours	2Hrs/Week		

Faculty (Names)	Coordinator(s)	Dr. Kashav Ajmera, Mr. Sumeshwar Singh		
Teacher(s) (Alphabetically)		Dr. Kashav Ajmera, Mr. Sumeshwar Singh		

COURSE	OUTCOMES	COGNITIVE LEVELS
C179.1	Demonstrate Cloud and Web based Services using web tools and technologies.	Understand (level 2)
C179.2	Develop web based applications on various Cloud Platforms viz. AWS, GCP etc.	Apply (level 3)
C179.3	Develop web services-based applications by using various web-based tools, viz. REST, SOAP etc.	Apply (level 3)
C179.4	Develop Cloud based applications by using and integrating different services offered on various Cloud Platforms, viz. AWS. GCP etc.	Create (level 6)

Module No.	Title of the Module	List of Experiments	СО
1.	Development of Web Service Applications	Demonstration of Web services and Service oriented Architectures with simple web service implementations.	CO1
2.		Development of web service applications by using various web based tools, like REST, JSON, SOAP etc.	CO2
3.	Development of Cloud and Web Servicesbased	Develop Cloud based native applications on Amazon Web Services (AWS), Google Cloud Platform (GCP) available services.	CO3
4.	application on Cloud Platforms	Develop Cloud based services and applications on various Cloud Platforms, viz. AWS. GCP, EC2, S3, RDS, Dockers, Containers, Compute etc.	CO4

Evaluation Criteria

Components Maximum Marks 20 marks

Lab Test# 1

Lab Test# 220 marks

D2D work 60(D2D: 40 marks, PBL: 20 marks)

Total 100

Project Based Learning: A group of maximum 2 students are formed. Each group chooses a Cloud and Web Services based project. The project shall be designed and/or modeled based on any Cloud and Web Services based Platform like AWS, Google cloud, SOAP, RESTful Services, UDDI, WSDL or any Cloud or Web Services based tools. The project shall function and run as per the objective of the project. Live demonstration of the project shall be shown during their presentation. The project evaluation shall be done based on the quality, innovation, relevance and creativity involved.

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)				
1.	Learning Amazon web services (AWS): a hands-on guide to the fundamentals of AWS cloud by Wilkins, Mark.				
2	David Clinton, "Learn Amazon Web Services in a Month of Lunches", MANNING, 2017				
3	George Reese, "Cloud Application Architectures: Building Applications and Infrastructure in the Cloud" O'REILLY publication.				
4.	K. Hwang, Geoffrey C. Fox, Jack J. Dongarra, "Distributed and Cloud Computing- From Parallel Processing to the Internet of Things", Morgan Kauffman Publishers, Elsevier.				
5.	ArshdeepBahga, Vijay Madisetti, "Cloud Computing: A Hands-on Approach", Universities Press, 2014				
6.	https://aws.amazon.com/				
7.	https://cloud.google.com/appengine/docs/				
8.	https://www.w3.org/XML/				
9.	Building applications in the cloud: concepts, patterns, and projects				
10.	Cloud computing bible by Sosinsky, Barrie Shukla,G.D.				

1. CO-PO and CO-PSO Mapping:

COs	PO 1	PO 2	PO 3	PSO1	PSO2
C179.1	1	1	2	2	1
C179.2	2	2	2	2	1
C179.3	2	1	2	2	2
C179.4	2	2	2	2	2
AVG.	1.8	1.5	2.0	2.0	1.5

2. CO-PO and CO-PSO Mapping (M. Tech- CSE) II sem:

COs	PO 1	PO 2	PO 3	PSO1	PSO2
C171.1	1 Basics of Cloud services demonstrated	1 Basic principles and architectures of Cloud model is demonstrated	2 Various Web Service types are demonstrated	2 Role of Web tools and Technologies are demonstrated	1 Various web based protocols are demonstrated
C171.2	2 Developing simple Web applications	2 Developing web applications using REST, SOAP etc.	Developing service oriented web applications using web service based tools.	Developing and Integrating real time applications using REST, SOAP, UDDI, WSDL etc.	Developing real life web service applications with updated protocols and tools.
C171.3	Developing simple applications on EC2 Instances on Amazon Web Services (AWS)	1 Developing and Integrating simple AWS based applications	Evaluation of instances on AWS, Elastic Compute Cloud (EC2) etc.	2 Developing Simple Storage Service (S3) based applications	2 Developing other AWS Service based applications, viz, Relational Database Service (RDS).Lamda etc.
C171.4	Developing Cloud Service applications on AWS, Elastic Compute Cloud (EC2), GCP	Creating and Developing AWS, Elastic Compute Cloud (EC2), GCP based simple real life applications	2 Creating Cloud basedapplications with database integration AWS and GCP Cloud platforms.	Creating more real life Cloud Service applications on AWS, EC2, GCP compute, platforms.	2 Developing Containers and Dockers based cloud service applications.
AVG.	1.8	1.5	2.0	2.0	1.5

(Prakash Kumar) Course Coordinator