Course Code	17M11EC118	Semester Odd (specify Odd/Even			ter 1st Session 2021-2022 from July to December		
Course Name	ADVANCED DIGITAL SIGNAL PROCESSING						
Credits	3	Contact H		3 Co r		ours	3

Faculty (Names)	Coordinator(s)	Dr. Vineet Khandelwal
	Teacher(s) (Alphabetically)	NIL

	COURSE OUTCOMES At the end of the semester, students will be able to	
CO1	Recall the principles of various transform techniques like Z, Chirp Z, Hilbert, Discrete Fourier transform and Fast Fourier Transform.	Applying Level (C3)
CO2	Demonstrate the ability to apply different methods to design and analyze digital FIR (Finite Impulse Response) and IIR (Infinite Impulse Response) filters with its structural realization.	Analyzing Level(C4)
CO3	Analyze Multirate signal processing and examine its application.	Analyzing Level(C4)
CO4	Comprehend different methods for designing adaptive filters and examine its application	Analyzing Level(C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Review of Digital Signal Processing	Review of discrete-time sequences and systems, Linear Shift Invariant (LSI) systems. Causality and Stability Criterion, FIR & IIR representations, Z-Transform, Discrete Fourier Transform (DFT), Fast Fourier Transform (FFT) algorithms using decimation in time and decimation in frequency techniques, Chirp Z- Transform, Hilbert Transform and applications	
2.	Design of IIR and	Digital filter specifications, selection of filter type, and filter	12

	FIR Filters	order, FIR filter design; using windowing Techniques, Fourier Series and frequency sampling method, Design of IIR Filters Using Butterworth, Chebyshev and Elliptic Approximations, Frequency Transformation Techniques; approximation of derivatives, Impulse invariant method, Bilinear transformation, Structures for IIR Systems – Direct Form I & II, Cascade, Parallel, Lattice & Lattice-Ladder Structures, Structures For FIR Systems – Direct, Cascade, Parallel, Lattice & Lattice ladder Structures.	
3.	Multirate Digital Signal Processing	Decimation & Interpolation, Sampling rate conversion, Identities, polyphase decomposition, General polyphase framework for Decimator and Interpolator, Multistage decimator and Interpolator, Efficient transversal structure for Decimator and Interpolator, FIR and IIR structure for Decimator, Filter design for FIR decimator and Interpolator, Application of Multirate Signal processing.	14
4.	Adaptive Filters	Introduction, Application of adaptive filters, correlation structure, FIR Weiner Filter, Adaptive Direct-form FIR filters Adaptive Lattice-Ladder filters, Introduction to linear prediction, linear prediction and autoregressive modeling.	10
		Total number of Lectures	42
Evaluation	Criteria		
Components T1 T2 End Semester Examination TA Total Project Based learni		Maximum Marks 20 20 35 25 100	

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)					
1.	J.G. Proakis & D.G. Manolakis, "Digital Signal Processing, Principles, Algorithms and Applications", 4 th Edition, PHI, 2012					
2.	Aurelio Uncini, "Fundamentals of Adaptive Signal Processing", Springer Nature, Jan 2015.					
3.	Tulay Adah and Simon Haykins, "Adaptive Signal Processing: Next Generation Solutions", Wiley India, 2012.					

Lab-wise Bre

Course Code	20M35EC111	Semester ODD (specify Odd/Even)		Semeste Month f		Session 2021 -2022 June- July
Course Name	Advanced Signal Processing Lab (MATLAB)					
Credits	3	Contact H		lours		6

Faculty (Names)	Coordinator(s)	Vineet Khandelwal
	Teacher(s) (Alphabetically)	Vineet Khandelwal

	OUTCOMES: mpletion of the course, students will be able to:	COGNITIVE LEVELS
CO1	Understand applications of MATLAB in advanced signal processing.	Understanding Level (C2)
CO2	Apply MATLAB for analysing signal operations, transformations and filtering on signals for different application areas in signal processing.	Analysing Level (C4)
C03	Apply MATLAB/Python for implementing and analysing arithmetic operations, transformations and filtering on digital images.	Analysing Level (C4)

Module No.	Title of the Module	List of Experiment	со
1.	Introduction to MATLAB	Introduction to MATLAB and its various applications in advanced signal processing.	C1
2.	Introduction to Spectral Analysis	Spectral Analysis of a signal over time	C2
3.	Spectral leakage and windowing	Spectral Leakage and Windowing	C2
4.	Design of FIR filter	Design and analysis of Digital FIR filter for audio denoising .	C2

1			
5.	Design of IIR filter	Design and analysis of Digital IIR filter for audio denoising	C2
6.	Design of Wiener filter	Design of Optimal Wiener filter for signal denoising	C2
7.	Image Deblurring	Restoration of motion blurred images with Wiener Filte	C3
8.	Image Denoising	Denoising of images using Wiener filtering	C3
9.	Image Compression	JPEG compression of images for various compression ratios	C3
10.	Virtual Lab: Colour Image Processing	To learn how to handle and process the colour images.	C3
11.	Virtual Lab: Image Processing Test Bench	To learn to build algorithms for solving problems and to build solutions using a cascade of image processing modules.	С3
Evaluatio	ı n Criteria		<u> </u>
Viva 2(En	id Sem Viva)2ad Sem Viva)2nt Components3ce1rd1	mum Marks 0 0 0 5 5 5 0 0	

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	1. J. UNPINGCO: Python for Signal Processing, Springer International Publishing Switzerland, 2014.			
2.	2. M. WICKERT: Signal Processing and Communications: Teaching and Research Using IPython Notebook, In Proc. of the 14th python in science conf., (scipy. 2015).			
3.	3. R. C. GONZALEZ, R. E. WOODS: Digital Image Processing, 4th edition, Pearson Education Inc, 2018.			
4.	4. S. DEY: Hands-On Image Processing with Python, Packt Publishing, 2018.			

Evaluation scheme for different assessment components (AC's),

1. AC1. To build up understanding of experiment (Quality)

2. AC2. Lab exercises to gain insight in to the theoretical concepts (Quantity)

Every Experiment has two AC's, each of 10 Marks. If in total 10 experiments are there, then total 300 marks, which will be scaled down to 30 at the end.

During Mid Sem Viva and End Sem Viva, 20 Marks are divided as

- (i) 10 marks for viva and
- (ii) 10 marks for performance.

Course Code	20M31EC115	Semester even	Semester II Session2021 - 2022Month fromFeb 22 to Jun 22	
Course Name	Deep Learning and Applica	lications		
Credits	3	Contact Hours	3	

Faculty	Coordinator(s)	Dr. Neetu Singh			
(Names)	Teacher(s) (Alphabetically)	Dr. Neetu Singh			
COURSE OUTCOMES			COGNITIVE LEVELS		
C113.1	Compare various loss learning approaches	functions and optimization methods for deep Understanding (C2)			
C113.2	Experiment with vario	Experiment with various CNN architectures for related applications			
C113.3	C113.3 Apply and analyze sequence models for related applications		Analyzing (C4)		

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction and Basic concepts	Introduction to Deep Learning, Bayesian Learning, Decision Surfaces, Linear Classifiers, Linear Machines with Hinge Loss, Optimization Techniques, Gradient Descent, Batch Optimization.	6
2.	Introduction to Neural Networks, Backpropagation and Generalization	Perceptron learning rule and proof of convergence. Performance surfaces and optimum points, Backpropagation: Multilayer Perceptrons, Function Approximation, Performance Index, Chain Rule, Backpropagating the Sensitivities. Various Loss Functions. Vapnik–Chervonenkis dimension.	6

3.	Convolutional Network (CNN Architectures		Layers for Conv Nets, Feature Maps and Pooling, FC layer to Conv layer conversion, Feature visualization, Batch normalization, Object detection using CNN, CNN architectures: MobileNet, Frequency CNN. Applications of CNN to multimedia.	12
4.	Sequence Moo	lels	Recurrent Neural Networks, Adding Feedback Loops and Unfolding a Neural Network, Long Short-Term Memory, Recurrent Neural Network for word predictions, Neural Language Models: Word Embeddings and Word Analogies. Image captioning, Visual question answering, Soft attention, Autoencoders.	12
5.	Generative Ad Networks	versarial	Introduction to GANs and generative modeling, Various GAN architectures and applications, Deep Reinforcement Learning.	5
		Total n	number of Lectures	41
Evaluation	n Criteria			
Componer T1	nts	Maxin 20	num Marks	
Т2		20		
End Semeste	er Examination	35		
TA Total		100	25 (5 Assignment, 5 Quiz, 5 PBL, 10 Attendance)	
-	-		apply various CNN models for the image classific	-
-	•	-	f programming assignments. Additionally, Long Sho implemented by the students to study the image cap	

model in conjunction with CNN will be implemented by the students to study the image captioning and visual question answering. Moreover, every student will prepare a review of the CNN-LSTM applications using current research papers.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	Introduction to Deep Learning, S. Kansi, Springer 2018.
2.	Deep Learning, I. Goodfellow, Y, Bengio, A. Courville, MIT Press, 2016.
3.	
	GANs in Action: Deep learning with Generative Adversarial Networks, J. Langr, V. Bok,

	Manning Publications, 2019.
4.	
	Pattern Classification- Richard O. Duda, Peter E. Hart, David G. Stork, John Wiley & Sons Inc., 2 nd Edition, 2001.

<u>Detailed Syllabus</u> Course Outcomes

Course Code	17I17EC511/17M17EC219/ 17M27EC215 /17M17EC222 /17I17EC511	Semester ODD		4 th fo	nester 3 rd & or M.Tech / for Dual ree
				2022	nth from July
Course Name	Dissertation				
Credits	M.Tech-4 &16	DD - 22	Contae Hours	ct	8 & 32

Faculty (Names)	Coordinator(s)	Dr. Rachna Singh, Dr Kirmender Singh
	Teacher(s) (Alphabetically)	All faculty of ECE Deptt.

COURSE	COURSE OUTCOMES		
C213.1	Summarize the contemporary scholarly literature, activities, and explored tools/ techniques/software/hardware for hands-on in the respective project area in various domain of Electronics Engineering.	Understanding Level (C2)	
C213.2	Gain knowledge of the State-of-Art in the chosen field of study. Analyze various feasible methods of solving a problem to slot a suitable solution methodology	Analyzing Level (C4)	
C213.3	Use latest techniques and software tools for achieving the defined objectives. Evaluate /Validate sound conclusions based on evidence and analysis	Evaluating Level (C5)	
C213.4	Demonstrate the oral and written communication skills. Describe the importance of possible future developments in the selected domain	Creating Level (C6)	

Evaluation Criteria					
(Dissertation at the end of third semester for M.Tech only)					
Components	Maximum Marks				
End Term Viva	60				
Day to Day	40				
Total	100				
(Dissertation at the end o	f final semester for M.Tech/DD)				
Components	Maximum Marks				
End Term Viva	50				
Special Contribution	10				
Day to Day	40				
Total	100				

Detailed Syllabus Course Outcomes

Course	17I17EC511/17M17EC219/	Semester EVEN		Semest	er 3^{rd} &
Code	17M27EC215 /17M17EC222		4 th for M	I.Tech /	
	/17I17EC511		11 th for	Dual	
				Degree	
				Session 2022	2021 -
				Month to May	from Jan
Course Name	Dissertation				
Credits			Contac Hours	t	8 & 32

Faculty (Names)	Coordinator(s)	Dr. Rachna Singh, Dr Kirmender Singh
	Teacher(s) (Alphabetically)	All faculty of ECE Deptt.

COURSI	COURSE OUTCOMES				
C213.1	Summarize the contemporary scholarly literature, activities, and explored tools/ techniques/software/hardware for hands-on in the respective project area in various domain of Electronics Engineering.	Understanding Level (C2)			
C213.2	Gain knowledge of the State-of-Art in the chosen field of study. Analyze various feasible methods of solving a problem to slot a suitable solution methodology	Analyzing Level (C4)			
C213.3	Use latest techniques and software tools for achieving the defined objectives. Evaluate /Validate sound conclusions based on evidence and analysis	Evaluating Level (C5)			
C213.4	Demonstrate the oral and written communication skills. Describe the importance of possible future developments in the selected domain	Creating Level (C6)			

Evaluation Criteria					
(Dissertation at the end of third semester for M.Tech only)					
Components	Maximum Marks				
End Term Viva	60				
Day to Day	40				
Total	100				
(Dissertation at the end of	(Dissertation at the end of final semester for M.Tech/DD)				
Components	Maximum Marks				
End Term Viva	50				
Special Contribution	10				
Day to Day	40				
Total	100				

Course Code	20M31EC113	Semester :Odd 2021(specify Odd/Even)			ster lst Session 2021 -2022 h from July 2021 –Dec 2021		
Course Name	Introduction to Machine Learning						
Credits	3	Contact H		ours	3		

Faculty (Names)	Coordinator(s)	Dr. Abhinav Gupta
	Teacher(s) (Alphabetically)	Dr. Abhinav Gupta

COURSE O	UTCOMES	COGNITIVE LEVELS
CO1	Illustrate various machine learning approaches	Understanding
		(C2)
	Experiment with the different techniques for feature extraction and	Applying
CO2	feature selection	(C3)
	Apply and analyze various classifier models for typical machine	Analyzing
CO3	learning applications	(C4)

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Introduction and Basic Concepts	Linear algebra, Probability distributions, Types of Data, Linear Models for Regression, Feature Extraction and Feature Selection.	10
2.	Introduction to Neural Networks	Neuron Model and Network Architectures: Perceptron and Hamming networks. Perceptron learning rule, Steepest Descent, Stable Learning Rates. Multilayer Perceptrons: Generalization, Methods for Improving Generalization.	6
3.	Decision TreeDecision Tree Representation, Construction of DecisionLearningTrees: Entropy Impurity, Variance Impurity, Misclassification Impurity. Axis-Parallel and Oblique Decision Trees, Issuesin decision tree learning.Random Forests		9

4.	Data Clustering Unsupervised learning, Basic clustering methods, Principal component analysis for feature reduction		6		
5. Support Vector Machines		Linear maximum margin classifier for linearly separable data, Linear soft margin classifier, Kernel induced feature spaces, Nonlinear classifiers, Regression by SVM, SVM variants.	10		
	Total number of Lectures 41				
Evaluation	Evaluation Criteria				
Componer	nts	Maximum Marks			
T1		20			
T2		20			
End Semes	ter Examination	35			
ТА		25 (5 Assignment, 5 Quiz, 5 Class Participation, 10 Attendance)			
Total		100			

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)			
1.	Applied Machine Learning, M. Gopal, McGraw Hill, 2018.			
2.	Machine Learning: The New AI, E. Alpaydin, The MIT Press Essential Knowledge series, 2016.			
3.	Machine Learning Yearning , Andrew Ng, Deeplearning.ai,2018.			
4.	The Elements of Statistical Learning, T. Hastie, R. Tibshirani, J. Friedman., 2nd Edition, Springer, 2008.			
5.	Machine Learning, T. Mitchell, McGraw Hill, 1997.			
6.	Pattern Recognition and Machine Learning, C.M. Bishop, 2nd Edition, Springer, 2011.			

Course Code	20M35EC112	Semester Even (specify Odd/Even)		Semeste Month f	Session 2021 -2022 Feb - Jun
Course Name	Machine Learning Lab (Python)				
Credits	3		Contact H	ours	6

Faculty (Names)	Coordinator(s)	Neetu Singh	
	Teacher(s) (Alphabetically)	Neetu Singh, Vijay Khare, Vivek Dwivedi	

	COURSE OUTCOMES: At the completion of the course, students will be able to:		
C172.1	Apply Python for implementation of machine learning algorithms to solve real-life problems.	Understanding Level (C2)	
C172.2	Apply Python for implementation of ANN and Genetic algorithms to solve real-life problems.	Analysing Level (C4)	
C172.3	Apply Python for implementation of deep learning algorithms to solve real-life problems.	Analysing Level (C4)	

Module No.	Title of the Module	List of Experiments	со
1.	Parametric regression	Fit the data points using a parametric Regression algorithm for the given data set.	C172.1
2.	Non-parametric regression	Fit the data points using a non-parametric Regression algorithm for the given data set.	C172.1
3.	Bayesian Learning	Implementation of naive Bayesian Classifier model to perform classification between images of the given image data set.	C172.1
4.	Bayesian Network	Construction of a Bayesian network classifier on medical data and demonstration of the diagnosis of a disease using standard	C172.1

		Disease Data Set.	
5.	Unsupervised Learning (Clustering)	Implement/Demonstrate EM, k-means algorithm for clustering of the given data. Compare the efficiency of two algorithms in clustering.	C172.1
6.	Supervised Learning (KNN and SVM)	Implement/Demonstrate k-Nearest neighbour algorithm (KNN) and Support Vector Machines (SVM) to classify a given standard data set.	
7.	Decision Trees	Implementation of the working of the decision tree based ID3 algorithm.	C172.1
8.	Evaluating Hypothesis	For a given set of training data, implementation of the FIND-S algorithm for finding the most specific hypothesis.	C172.1
9.	Neuron model	Implement the basic logic gates using basic neuron model.	C172.2
10.	Perceptron	Create a single layer perceptron with appropriate number of inputs and outputs. Train it using a fixed increment learning algorithm until no change in weights is required. Output the final weights.	C172.2
11.	Back propagation	Write a program to implement multilayer neural network with back propagation algorithm for given data	C172.2
12.	RBF Neural network	Write a program to implement multilayer neural network with back propagation algorithm for given data	
13.	Neuron model	Implement the basic logic gates using basic neuron model	C172.2
14.	Genetic Algorithms	Implement travelling salesperson problem (TSP) using genetic algorithms. Outline learning rule, perceptron, back propagation, fuzzy logic and genetic algorithms.	C172.2
15.	Keras	Introduction to Python deep learning with Keras.	C172.3
16.	CNN	Implementation of a Convolutional Neural Network (CNN) for image classification.	
17.	Tuning CNN	Tune implemented CNN for better accuracy, convergence rate and lesser training time.	
18.	RNN	Implementation of Recursive Neural Network (RNN) for text	C172.3

		classification.			
19.	RNN	Implementation of Recursive Neural Network (RNN) for speech recognition.	C172.3		
20.	Deep belief network	Implementation of unsupervised learning (deep belief network) for image recognition.	C172.3		
Evaluation (Evaluation Criteria				
Component Viva 1 (Mid Viva 2 (End Assessment Attendance Lab Record Total	Sem Viva)	ximum Marks 20 20 30 15 15 100			

	Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	1. R. DUDA, H. PETER , and S. DAVID Stork: Pattern Classification, 2nd ed. New York, NY: Wiley- Interscience, 2000.		
2.	T. MITCHELL: Machine Learning, New York, NY: McGraw-Hill, 1997.		
3.	M. GOPAL: Applied Machine Learning, M. Gopal, McGraw Hill, 2018.		
4.	E. ALPAYDIN: Machine Learning: The New AI, The MIT Press Essential Knowledge series, 2016.		
5.	R. C. GONZALEZ, R. E. WOODS: Digital Image Processing, 4th edition, Pearson Education Inc, 2018.		
6.	S. DEY: Hands-On Image Processing with Python, Packt Publishing, 2018.		

Detailed Syllabus Lecture-wise Breakup

Subject Code		Semester Even	Semester M.Tech Session 2022-2023
			Month from
Subject Name	Multirate Signal P	rocessing and Filter Banks	3
Credits	3	Contact Hours	3-0-0
Faculty	Coordinator(s)	Kuldeep Baderia	
(Names)	Teacher(s) (Alphabetically)	Kuldeep Baderia	

COURSI	E OUTCOMES	COGNITIVE LEVELS
CO1	Recap the concept of Digital Signal Processing.	Understanding Level (C2)
CO2	Understand the concept of Multirate Signal Processing and its Applications.	Understanding Level (C2)
СО3	Understand the concepts of Maximally Decimated Filter Banks and Paraunitary Perfect Reconstruction (PR) Filter Banks and analyze by applying Multirate Signal Processing.	Analyzing Level (C4)
CO4	Understand the concept of Linear Phase Perfect Reconstruction QMF Banks and Cosine Modulated Filter Banks and analyze by applying Multirate Signal Processing.	Analyzing Level (C4)

Module No.	Iodule No. Subtitle of the Module Topics in the module		
1.	Review of Discrete-Time Systems and Digital Filters	Introduction, Discrete-Time Signals, Multi- Input Multi-Output Systems, Discrete-Time Filters (Digital Filters), Filter Design Specifications, FIR Filter Design, IIR Filter Design, Allpass Filters	5
2.	Fundamentals of Multirate Systems,	Basic Multirate Operations, Interconnection of Building Blocks, The Polyphase Representation, Multistage Implementations ,Some Applications of Multirate Systems, Special Filters and Filter Banks	6
3.	Maximally Decimated Filter Banks	Introduction, Errors Created in the QMF Bank, A Simple Alias-Free QMF System, Power Symmetric QMF Banks, M-channel Filter Banks, Polyphase Representation, Perfect Reconstruction Systems, Alias-Free Filter Banks, Tree Structured Filter Banks, Transmultiplexers	8
4.	Paraunitary Perfect Reconstruction (PR) Filter Banks	Introduction, Lossless Transfer Matrices, Filter Bank Properties Induced by Paraunitariness, Two Channel FIR Paraunitary QMF Banks ,The Two Channel Paraunitary QMF Lattice, M-channel FIR Paraunitary Filter Banks	8
5.	Linear Phase Perfect Reconstruction QMF Banks	Introduction, Some Necessary Conditions ,Lattice Structures for Linear Phase FIR PR QMF Banks, Formal Synthesis of Linear Phase FIR PR QMF Lattice	7
6	Cosine Modulated Filter Banks	Introduction, The Pseudo QMF Bank, Design of the Pseudo QMF Bank, Efficient Polyphase Structures, Deeper Properties of Cosine Matrices, Cosine Modulated Perfect Reconstruction Systems	8
		Total number of Lectures	42

Components	Maximum Marks		
T1	20		
T2	20		
End Semester Examination	35		
ТА	25(Attendance, Performance. Assignment/Quiz)		
Total	100		

Project based Learning Component: Multirate Signal Processing and Filter Banks is advance topic of Digital Signal Processing. As concern project based learning, there are various applications of this subject like speech processing, image processing, biomedical signal processing and satellite image processing etc. By understanding of this subject students are able to apply the knowledge in various fields of digital signal processing.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1.	P.P. Vaidyanathan, Multirate Systems and Filter Banks, Pearson Education, 1993.		
2.	N. J. Fliege, Multirate Digital Signal Processing: Multirate Systems - Filter Banks – Wavelets, Wiley, 1999.		
3.	R. E. Crochiere and L.R. Rebiner, Multirate Digital Signal Processing, Pearson 1983.		
4.	G. J. Dolecek, Advances in Multirate Systems, Springer International Publishing, 2017		

Lecture-wise Breakup

Subject Code	17M11EC129	Semester Eve	Semester 2ndSession2021-22Month fromJan 22toJun 22
Subject Name	Project Based Learning	; - I	
Credits	2	Contact Hours	2

Faculty (Names)	Coordinator(s)	Dr. Vivek Dwivedi
	Teacher(s) (Alphabetically)	NA

COURSE O	UTCOMES	COGNITIVE LEVELS
C171.1	Summarize the contemporary scholarly literature, activities, and explored tools/ techniques/software/hardware for hands-on in the respective project area in various domain of Embedded Systems, Signal Processing, VLSI, Communication, Artificial Intelligence and Machine Learning/Deep Learning etc.	Understanding (Level II)
C171.2	Analyze/ Design the skill for obtaining the optimum solution to the formulated problem with in stipulated time and maintain technical correctness with effective presentation.	Analysing (Level IV)
C171.3	Use latest techniques and software tools for achieving the defined objectives.	Evaluating (Level V)
C171.4	Evaluate /Validate sound conclusions based on analysis and effectively document it in correct language and proper format.	Evaluating (Level V)

Project Based Learning Component: Every student will be assigned a project supervisor. The project supervisor will assign 4 different tasks to the student. These tasks will be evaluated by a panel of examiners in the mid and end semester. The students will explore various tools/ techniques/software/hardware for hands-on in the respective project area in various domain of Embedded Systems, Signal Processing, VLSI, Communication, Artificial Intelligence and Machine Learning/Deep Learning etc.

Evaluation Criteria	
Components	Maximum Marks
Mid Sem Evaluation 40	
Final Evaluation 40	
Report	20
Total	100

Subject Code	17M11EC129	Semester OD	D	Semester 3rd Session2021-22Month fromJuly 21to Dec 21
Subject Name	Project Based Learning	g - 11		
Credits	2	Contact Hours		2

Faculty (Names)	Coordinator(s)	Dr. Vivek Dwivedi
	Teacher(s) (Alphabetically)	NA

COURSE O	UTCOMES	COGNITIVE LEVELS
C171.1	Summarize the contemporary scholarly literature, activities, and explored tools/ techniques/software/hardware for hands-on in the respective project area in various domain of Embedded Systems, Signal Processing, VLSI, Communication, Artificial Intelligence and Machine Learning/Deep Learning etc.	Understanding Level (C2)
C171.2	Analyze/ Design the skill for obtaining the optimum solution to the formulated problem with in stipulated time and maintain technical correctness with effective presentation.	Analyzing Level (C4)
C171.3	Use latest techniques and software tools for achieving the defined objectives.	Evaluating Level (C5)
C171.4	Evaluate /Validate sound conclusions based on analysis and effectively document it in correct language and proper format.	Evaluating Level (C5)

Project Based Learning Component: Every student will be assigned a project supervisor. The project supervisor will assign 4 different tasks to the student. These tasks will be evaluated by a panel of examiners in the mid and end semester. The students will explore various tools/ techniques/software/hardware for hands-on in the respective project area in various domain of Embedded Systems, Signal Processing, VLSI, Communication, Artificial Intelligence and Machine Learning/Deep Learning etc.

Evaluation Criteria	
Components	Maximum Marks
Mid Sem Evaluation	40
Final Evaluation	40
Report	20
Total	100

Course Description

Course Co	ode	18M11GE111	Se	mester Odd		ter I Session from July 20		
Course Na	ame	Research Metho	dol	ogy & Intellectual	Propert	y Rights		
Credits		2		Contact Hours			2-0-0	
Faculty		Coordinator(s)		Prof. B.P.Chamol	a			
(Names)		Teacher(s) (Alphabetically)	Prof. B.P. Chamo	la			
COURSE	OUT	COMES:					COGNIT	IVE LEVELS
After purs	uing t	he above mention	ed (course, the students	s will be	e able to:		
C101.1	exp	lain the basic con	cep	ts and types of rese	earch		Understar	nding Level (C2)
C101.2		ine a research prol lyze research rela		n, its formulation, information	method	ologies and	Analyz	ing Level (C4)
C101.3 explain research ethics, u related to their innovative		, understand IPR, patents and their filing ive works.		Understanding Level (C2)				
C101.4	-	•		statistical data and r research problem		he relevant	Analyz	ing Level (C4)
Module No.	Tit	tle of the Module	,	Topics in the Mod	lule			No. of Lectures for the module
1.	Res	search		What is research? research? How to r			'hat is not	3
2.	Rep	port writing		How to write repo writing. How to w identification and s	rite a re	-	-	4
3.	Res	ics, IPR and earch hodologies	1	Research ethics, rights, plagiarism research process a attempt solution to	regula and com	ation 2018. 1mon methode	Steps in	8
4.	and	sics of statistics probability ributions		Basic statistical co. Some common pro	-	-		7
5.		t of hypothesis regression		Hypothesis testing. parametric data, In			on	8

	analysis	analysis.	
I			
		Total number of Lectures	30
((Course delivery method:	open ended discussion, guided self-study, lectures)	
Evaluation	Criteria		
Componen	ts	Maximum Marks	
Mid Term E	Examination	30	
End Semest	er Examination	40	
Assignment	S	30 (Quiz, Assignments)	
Total		100	

Project based learning: Students divided in small groups will be assigned topics related to patents, intellectual property rights, plagiarism, and statistics. Students can write a report/review paper and find its similarity through plagiarism software available online. Students may collect data and test the relevant hypothesis. They may study some data set and do its regression analysis. The main purpose is to expose students to a wider arena of applicable knowledge of the subject.

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

Stuart Melville and Wayne Goddard, Research Methodology: An Introduction for Science & Engineering Students, Kenwyn, South Africa: Juta & Co. Ltd., 1996.

Kothari, C.R., Research Methodology: Methods and Techniques, New Age International, New Delhi, 2009.

Kumar, Ranjit, Research Methodology: A Step by Step Guide for Beginners, 2nd Edition, Sage Publications Ltd., 2005.

Ramappa, T., Intellectual Property Rights Under WTO, S. Chand, New Delhi, 2008.

Wayne Goddard and Stuart Melville, Research Methodology: An Introduction, Kenwyn, South Africa: Juta & Co, 2001.

Detailed Syllabus Course Outcomes

Course Code	17M17EC218	Semester Odd	-	Semeste	_	Session 2021-2022 to December
Course Name	Seminar & Term Pa					
Credits	4		Contact H	ours		

Faculty (Names)	Coordinator(s)	Saurabh Chaturvedi
	Teacher(s) (Alphabetically)	Saurabh Chaturvedi

S. N.	COURSE OUTCOMES: At the completion of the course, students will	COGNITIVE LEVELS
	be able to	
C212.1	Understand relevant theories, methods and research design relating to the seminar topic selected by a student.	Understanding Level (C2)
C212.2	Analyze the work of other authors/researchers and contribute to the field of knowledge with the cooperation of the supervisor.	Analyzing Level (C4)
C212.3	Evaluate the previously published research works, findings and conclusions.	Evaluating Level (C5)
C212.4	Develop and refine the master's dissertation topic and proposal. Develop the effective technical writing, communication and presentation skills.	Creating Level (C6)

Evaluation Criteria		
Components	Maximum Marks	
Mid semester viva	20	
End semester viva	20	
Day-to-day evaluation	40	
Term paper/Report	20	
Total	100	

Course Code	17M11EC121	Semester :Even 2022		Semester IInd Session 2021-2022	
				Month f	rom Feb 2022– June 2022
Course Name	Statistical Signal Processing				
Credits	3	Contact		ours	3

Faculty (Names)	Coordinator(s)	Dr.Vineet Khandelwal
	Teacher(s) (Alphabetically)	Dr. Vineet Khandelwal

COURSE OUTCOMES		COGNITIVE LEVELS	
C116.1	Understand the need of random variables and random processes in signal processing.	Understanding (C2)	
C116.2	Experiment with various algorithms to model the random signals.	Applying (C3)	
C116.3	Apply and Analyze Wiener and adaptive filters for signal processing applications.	Analyzing (C4)	

Module No.	Title of the Module	Topics in the Module	No. of Lectures for the module
1.	Review of Linear Algebra, Random Variables and Random Processes	Liner algebra: vectors, linear independence and vector spaces, Matrices: inverse, determinant and trace; Linear equations, quadratic and Hermitian forms, eigenvalues and eigenvectors; Random variables: Jointly distributed random variables, Joint moments, Linear mean square estimation, bias and consistency; Random process : ensemble averages, Gaussian process, stationary process, ergodicity, white noise, Linear system with random input, Spectral factorization theorem and its importance, innovation process and whitening filter.	11
2.	Random Signal Modelling	Least square method, Pade approximation, Prony's method, Stochastic models: MA(q), AR(p), ARMA(p, q)	7

		models.		
3.	Levinson-Durbin Recursion	Development of the recursion, Lattice filter and properties, 7 Different recursion methods		
cancellation; IIR Wiener filter: no		FIR Wiener filter: Filtering, Linear prediction , Noise cancellation; IIR Wiener filter: noncausal IIR Wiener filter, causal IIR Wiener filter, causal Wiener filtering and linear prediction, Wiener deconvolution.	7	
5.	Adaptive Filtering	Principle and Application, Steepest Descent Algorithm, Convergence characteristics; LMS algorithm, convergence, other LMS based adaptive filters.		
6.	Spectral Estimation	Non parametric and parametric methods.	3	
	K	Total number of Lectures	41	
Evaluati	ion Criteria			
Components T1 T2 End Semester Examination TA Total		Maximum Marks 20 20 35 25 (5 Assignment, 5 Quiz, 5 Class Participation, 10 Attendance) 100		

Recommended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)		
1.	Monson H. Hayes, "Statistical Digital Signal Processing And Modeling"; John Wiley & Sons, 2004.	
2.	Simon Haykin," Adaptive Filter Theory", fifth edition, Pearson, 2013.	